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Abstract

INVESTIGATING THE MECHANISM OF THE COMPARTMENTALIZED CBP (CREB-
BINDING PROTEIN) UBIQUITIN LIGASE ACTIVITIES
By Oluwatoyin E. Akande, PhD

A dissertation submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2016
Advisor: Steven R. Grossman, M.D/Ph.D.
Dianne Nunnally Hoppes Chair in Cancer Research
Professor and Chair of Hematology, Oncology, and Palliative Care
Deputy Director of VCU Massey Cancer Center
Virginia Commonwealth University
CBP (CREB Binding_Protein) is global transcriptional co-activator and histone
acetyltransferase. CBP is involved in the modulation of the transcription of many genes
via histone acetylation at the promoter regions of the target genes. Also, non-histone
proteins and transcription factors can be acetylated by CBP to promote their
transcriptional activation. In addition to its transcription co-activator role, CBP is involved
in many other pathological and physiological cellular processes such as cell growth and
differentiation, cell transformation and development, response to stress, cell cycle
regulation and apoptosis.
CBP and its paralogue p300, play double-edged roles in the regulation of p53, a
well characterized tumor suppressor protein, via ubiquitination and acetylation activities.
Prior work has shown that CBP and p300 contribute to the maintenance of physiologic

p53 levels in unstressed cells via a cytoplasmic but not nuclear, p53-directed E4

polyubiquitin ligase activity, subsequently leading to p53 proteasomal degradation. Our

Xi
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previous work also revealed that CBP and p300 possess intrinsic cytoplasmic but not
nuclear E3 autoubiquitination activity in the absence of cellular stress. The mechanism
of the compartmentalized CBP/p300 ubiquitin ligase activities was not studied. In this
thesis, | present insights gained from efforts to determine the regulation of CBP ubiquitin
ligase activities in the cytoplasm versus nucleus, in the absence and presence of DNA
damage stress. Chapter two discusses the effect of DNA damage on CBP E3
autoubiquitination activity and also addresses the differential post translational
modifications between cytoplasmic and nuclear CBP, in the absence and presence of
DNA damage. Aspects of the regulation of the compartmentalized CBP ubiquitin ligase
activities in the absence of cellular stress were covered in chapter three. We employed
Multidimensional Protein Identification Technology (MudPIT) and mass spectrometry
analysis of purified cytoplasmic and nuclear CBP to identify nuclear and cytoplasmic
CBP interacting proteins. MudPIT analysis revealed that Cell Cycle and Apoptosis
Regulator protein (CCAR2), also known as Deleted in Breast Cancer 1 protein (DBC1),
is a novel CBP-interacting protein, in the cytoplasmic and nuclear compartments.
Functional analysis suggested that DBC1 directly regulates cellular
compartmentalization of CBP E3 and p53-directed E4 ubiquitination activities. This work
identifies the different regulatory mechanisms of differential CBP ubiquitin ligase
activities in the absence and presence of DNA damage. Remarkably, DBC1 was
identified as a novel binding partner of CBP and a critical regulator of CBP ubiquitination
activities towards p53.This work may provide novel strategies for the development of
cancer therapeutics against tumors maintaining wild type p53, which have deleted

DBC1.

Xii
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Chapter 1: Introduction

1.1 Initial Identification of CBP and its paralogue, p300

CBP (cyclic adenosine monophosphate (cCAMP) response element binding
protein (CREB)-binding-protein) was originally identified in 1993 by John Chrivia in
Goodman's group, as a binding partner of phosphorylated CREB [1]. A human thyroid
Agtll library was screened with recombinant CREB labeled with (y-32P) ATP and the
complementary DNA obtained from the positive clone was in turn used to screen a
mouse brain cDNA library, resulting in the discovery of 265kDa mouse CBP [1]. This
group demonstrated that the activation domain of phosphorylated CREB is required for
binding CBP and that non phosphorylated CREB could not interact with CBP. Using
indirect immunofluorescence technique, they showed that CBP mostly localizes to the
nucleus with some found in the cytoplasm [1].

p300, a nuclear phosphoprotein, is a functional homologue of CBP [2]. p300,
like CBP, binds phosphorylated CREB and participates in the transcription of CREB-
modulated genes through evolutionary conserved domains [2]. p300 was initially
identified as a binding partner of the human adenovirus early-region 1A (E1A) protein in
the early 1980’s. The identification of this 300kDa protein resulted from an attempt to
elucidate the domains required for the transformation and oncogenic properties of

human adenovirus E1A, the first viral proteins that are produced following adenovirus
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infection [3]. Later in 1988, Cay Egan and his group revealed that the binding site of
p300 lies in the extreme amino-terminus region of E1A, a region required for its
oncogenic transformation property [4]. In a separate study carried out in 1992, the
oncogenic transformation and transcription repression abilities of E1A were examined in
response to abolishing the interaction between E1A and p300 [5]. The mutant forms of
E1A incapable of interacting with p300 were observed to have reduced oncogenic
transformation ability and also failed to repress transcription from different promoters
tested [5]. CBP was also found to interact with the human adenovirus E1A protein [2].
Even though different genes encode CBP and p300, they are both very similar
structurally and functionally (Fig. 1.1). As a result, these two proteins are oftentimes
referred to in many literatures as CBP/p300. It is noteworthy however, that there are
notable functional differences between CBP and p300 and as such, are not all the time
interchangeable. Both proteins contain more than 2400 residues with the following
interaction domains: the nuclear receptor interaction domain (RID), the CREB and MYB
interaction domain (KIX), three cysteine/histidine regions (TAZ1/CH1, CH2, and
TAZ2/CH3), the bromo domain, the histone acetyltransferase domain and the

C-terminus glutamine-proline rich region (Fig. 1.1).
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e l i - m e

Figure 1.1 Schematic representation of CBP and p300. RID, receptor-interacting domain; CH1-3,
cysteine and histidine-rich regions 1-3; KIX, binding site of CREB; BD, bromodomain; HAT, histone

acetyltransferase domain; QP, glutamine- and proline-rich domain
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1.2 CBP and p300 are Histone Acetyltransferases

Histone acetyltransferases (HATS) are enzymes that participate in the acetylation
of specific lysine residues on histone proteins thereby promoting gene activation and
transcription. Histone acetylation is a type of post-translational modification that
correlates with chromatin remodeling. HATs function by transferring acetyl group from
acetyl-coenzyme A to the epsilon amino group of lysine side chains on the N-terminal
region of histone tails. Mammalian HATs are grouped into four families based on
sequence similarity and based on related substrate specificity within families [6]. The
families are: the MYST family, GCN5 and PCAF family, KATs (lysine or K-
acetyltransferases) family and the nuclear receptor co activator family [6, 7]. Despite the
high degree of sequence similarity between HAT family members, there are differences
in the HAT domain sequences between families [6].

CBP and p300 are homologous proteins that comprise the KAT3 family of HATs
[6, 8]. Both proteins consist of over 2400 amino acids. It has been shown that both CBP
and p300 possess the ability to acetylate all four histone proteins in nucleosomes even
though they do not contain the conserved motif present in other acetyltransferases [7,
8]. The histone acetyltransferase domain of p300 was shown to be located between the
bromodomain and the E1A-binding domain and in CBP, between the residues 1174-
1850, which is the corresponding region [8]. Most of the well-studied conserved
domains of CBP and p300 have diverse arrays of interacting protein partners. Despite

the high levels of homology between CBP and p300, both proteins exhibit unique
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differential functions and they also have differential substrate specificity profiles and
therefore not interchangeable.

The HAT activity of CBP/p300 has become an important therapeutic target and
has been shown to be inhibited by the adenoviral protein E1A, interaction with various
transcription factors and by synthetic and non-synthetic specific inhibitors [9-13].

The design and application of peptide CoA conjugates as selective synthetic HAT
inhibitors was first described in 2000 where Lys-CoA was found to specifically inhibit
p300 acetyltransferase activity in in vitro transcriptional studies [11]. Curcumin
(diferuloylmethane), an anti-tumor and anti-inflammatory agent was reported to repress
acetylation of histones by CBP/p300 thereby inhibiting transcription and in addition,
inhibited p300-mediated acetylation of p53 [12].

On the basis of the structure of the p300 HAT domain, a selective, potent and
cell permeable small molecule inhibitor known as C646 was developed and has been
used to determine the role and importance of p300 HAT in prostate cancer [13]. It has
been shown that inhibition of p300 HAT using C646 has effect on tumor cell
progression, cellular senescence and DNA damage response in melanoma cell lines
[14]. Aberrant HAT activity has been implicated in several human diseases such as

cancer, metabolic processes and inadequate long-term memory formation [6, 15].

1.3 The Role of CBP/p300 in Transcription and other Cellular Processes

A. Role in Transcription
Eukaryotic gene transcription is a process regulated by DNA binding transcription

factors that recognize promoters of target genes. CBP and p300 are highly conserved
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co-activators that can interact with the basal transcription machinery and also with
different DNA binding transcription factors. As a result, they are being referred to as
global regulators of transcription [16]. CBP/p300 also functions as co-activators for
nuclear receptors [17, 18]. Recruitment of CBP/p300 to the basal transcription
machinery by DNA binding factors can occur via direct and indirect interactions, and the
transactivation domains (TADs) of CBP/p300 mediate protein-protein interactions with
TADs of DNA-binding transcription factors and basal transcription machinery as well as
with TADs of different transcription activators [19, 20]. Even though histone acetylation
through the intrinsic HAT domain of CBP/p300 has been considered as the major
universal mechanism by which CBP/p300 modulate transcription of target genes, [21]
other mechanisms have also been described. These mechanisms are: acetylation of
non-histone transcription factors such as p53, E2F1, MEF2 [22-24], physical bridges or
scaffold for DNA-binding and general transcription factors [25, 26], and recruitment of

components of RNA polymerase Il machinery [27] (Fig. 1.2).
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DNA Binding Basal

Transcription Transcription
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Figure 1.2 Mechanism of CBP/p300 transcriptional co-activation. A. CBP/p300 as bridges between
DNA binding transcription factors and the basal transcription machinery. B. CBP/p300 as histone
acetyltransferase causing chromatin relaxation thereby promoting transcription of target genes.

C. CBP/p300 as non-histone acetyltransferase. Acetylation of certain DNA binding transcription factors.
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B. Acetylation of non-histone proteins by CBP/p300

The global transcriptional coactivators CBP and p300, in addition to possessing
intrinsic histone acetyltransferase property also have the ability to acetylate other non-
histone proteins and transcription factors thereby stimulating transcription [21]. The first
discovered and well-studied non-histone protein acetylated by both CBP and p300 is
p53 [22, 28]. p53 is a DNA sequence specific transcription factor and a tumor
suppressor protein that in response to DNA damage initiates cell cycle arrest or
apoptosis. Its transcriptional activity is tightly regulated in particular by posttranslational
modifications of the C-terminal regulatory regions [28-30]. In response to DNA damage,
carboxyl-terminal lysine residues of p53 become acetylated via its direct interaction with
CBP/p300. This acetylation process was observed in both in-vivo and in-vitro studies
and was shown to greatly increase the transcriptional activity of p53 [27]. Another non-
histone protein acetylated by CBP is the E2F transcription factor [23]. E2F is required
for the transcription of S-phase genes during the cell cycle. It was shown that
acetylation of E2F by CBP/p300 and CBP/p300-associated factor P/CAF stimulates the
functions of E2F [23]. Other non- histone proteins whose transcriptional activation is
enhanced as a result of acetylation by CBP and/or p300 include; c-Myb, an oncoprotein
and regulator of proliferation and differentiation of certain cell types [31, 32], myocyte
enhancer factor 2 (MEF2) protein [24], GATA-1 which is involved in the differentiation of
certain blood cells [33], erythroid kruppel-like factor (EKLF), a vertebrate red blood cell

specific transcription factor [34, 35].
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C. Role in Other Cellular Processes

In addition to regulating transcription of target genes, CBP and p300 are involved
in a variety of other complex pathological and physiological cellular processes. These
processes include; cell growth and differentiation, cell transformation, response to
stress, cell cycle regulation and apoptosis [36-44].
Aberrant expression of CBP/p300 results in developmental abnormalities such as
Rubinstein and Taybi syndrome (RTS) in humans and in animal models [36]. RTS is a
well-characterized human developmental disorder resulting from mutations in CBP and
characteristic features of this disorder include mental retardation, abnormal facial
structure, growth retardation, microcephaly and other digital anomalies [36]. Also, it was
found that interaction of the adenovirus protein E1A with CBP/p300 was crucial for E1A
to induce transformation of rodent cells [37] where E1 A mutants incapable of
interacting with CBP/p300 lost the ability to induce transformation of rodent cells.
CBP and p300 are also integral players in cellular responses to stress and in cell cycle
regulation. During oxygen deprivation, CBP/p300 forms a complex with the
heterodimeric transcription factor hypoxia- inducible factor (HIF)-1a. This complex
participates in signaling events that eventually lead to the activation of multiple hypoxia-
activated genes [38].

Studies carried out in Caenorhabditis elegans and in mice by Rebel et al., (2002)
suggested that CBP/p300 play a crucial role in hematopoietic stem cell (HSC) fate self-
renewal and differentiation [42]. It was observed from these studies that full dose of

CBP but not p300 was necessary for HSC self-renewal. Monoallelic loss of CBP
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resulted in a critical reduction in HSC self-renewal ability while a much less reduction
was observed in a single loss of p300. Conversely, their data indicated that p300 but not
CBP was significantly important for proper hematopoietic differentiation [42].

In 2000, Ait-Si-Ali demonstrated the importance of CBP/p300 during the G1/S transition
of the cell cycle. By artificial modulation of CBP/p300 levels in cells using microinjection
of specific antibodies and expression vectors, they showed the requirement of
CBP/p300 in cell proliferation and in G1/S transition [43]. By measuring BrdU
incorporation, synchronized serum-deprived NIH3T3 cells injected with anti CBP/p300
antibodies showed delayed entry into S phase when compared to control cells. In this
same study, it was observed that CBP/p300 is necessary for the activity of E2F
transcription factor during the transition from G1 to S phase of the cell cycle.

The role of p300 but not CBP in apoptosis induced by DNA damage caused by cell
irradiation has been described. It was observed that p300 but not CBP regulates the
sensitivity of human MCF-7 breast cancer cells to irradiation and also plays a role in
apoptosis in response to DNA damage [44]. The results from this study showed that
p300 deficient cells had less irradiation- induced sub G1 DNA content when compared

to controls and CBP deficient cells [44].

1.4 CBP and Human Diseases

CBP plays important roles in a number of human diseases and cancer. This is
not surprising as CBP is involved in numerous cellular physiological and pathological

processes.
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A. Role in Cancer

Whether CBP functions as a tumor suppressor or contributes to tumor
development has been an issue of debate that majorly depends on the physiologic
characteristic of the tumor and the overall cellular background or context. CBP
participates in many tumor-suppressor pathways and is also required for the action of
many oncogenes [36]. Interaction of CBP with p53 is an example of the tumor
suppression function of CBP. Acetylation of p53 by CBP/p300 contributes to the ability
of p53 to activate transcription of genes that are involved in the response to DNA
damage thereby suppressing tumor growth [22, 28, 45].

CBP also interacts physically and functionally with BRCAL1, a breast and ovarian
cancer-specific tumor suppressor protein and a transcription factor involved in DNA
damage repair [46]. This interaction was observed in both in vitro and in vivo
experiments and p300 promoted BRCAl-mediated transactivation. In this study it was
further indicated that the adenovirus E1A oncoprotein suppressed the interaction
between CBP/p300 and BRCAL and this led to inhibition of the tumor suppression
function of BRCAL [46]. CBP also interacts with other tumor suppressors and
protooncoproteins such as c-Myb as previously mentioned [32, 36, 47], c-Jun and c-Fos
[48-51]. The viral oncoprotein, human T-cell leukemia virus (HTLV-1), also requires
interaction with the CREB binding domain of CBP/p300 for its transcriptional functions
[36, 52-54].

Early studies have shown that some other viral oncoproteins such as adenovirus

E1A, human papillomavirus E6 and simian virus (SV) 40 T antigen, have inhibitory
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effects on CBP/p300 functions [36, 55-57]. These viral oncoproteins tend to bind the
third zinc finger domain of CBP/p300. This association interferes with interactions with
transcription factors and other positive effectors such as RNA helicase A, transcription
factor IIB (TFIIB), and the histone acetylase P/CAF, and as a result, abrogates the
coactivator property of CBP/p300 [36, 56, 58]. The E6 protein was shown to direct
ubiquitination and degradation of the tumor suppressor p53 by recruiting p53 into a
complex containing the ubiquitin protein ligase E6 associated protein (E6AP) [59]. In a
separate study carried out by Zimmermann and colleagues (1999), it was reported that
the down regulation of p53 transcriptional activity occurs through targeting the p53
coactivators CBP and p300 [60]. Their data suggested that by targeting CBP/p300, an
E6 from a high risk type but not a low risk HPV type repressed p53 dependent
transcription. Similar effect of inhibition of transcriptional activity of p53 by targeting
coactivator function of CBP and p300 was also observed with the E6 oncoprotein of
bovine papillomavirus type 1 (BPV-1) [61].

Germline mutations (point mutations, translocations or deletions) of CBP result in
Rubinstein-Taybi syndrome (RTS), a genetic developmental disorder characterized by
broad thumbs and toes, short stature, abnormal facial features and mental disabilities
[36, 62, 63]. RTS patients have a much greater risk of developing certain types of
cancer especially childhood neural and developmental tumors [36, 64]. RTS is a
haploinsufficiency disorder and clinically, only about 3-25% of patients have deletions
that can be detected by fluorescence in situ hybridization (FISH) [65, 66]. Work done by
another team however, suggested that the presence of a detectable deletion by FISH

corresponds with a more severe phenotype [67]. Skeletal abnormalities resulting from
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aberrant BMP-7 signaling have been described in mouse models of RTS [68], but it
remains uncertain whether these abnormalities compare with those found in human
RTS patients [69].

Chromosomal translocations targeting CBP gene have been found in leukemias
and lymphomas. Two different somatic translocations involving CBP are seen in acute
myeloid leukemia (AML); t (8,16) (p11, p13) and t (11,16) (923, p13.3) [70-72]. The t
(8,16) translocation was first observed in the M4/M5 French-American-British (FAB)
subtype of AML [73, 74]. This abnormality is mostly characterized by
erythrophagocytosis as seen in about 76% of t (8;16) cases. The two genes rearranged
at the breakpoints resulting fromt (8,16) (p11, p13) translocation in AML are CBP and
the monocytic leukemia zinc finger protein (MOZ) gene which encodes MOZ protein, a
putative acetyltransferase. The somatically acquired MOZ-CBP fusion protein combines
MOZ DNA-binding motifs and the CBP acetyltransferase domain. This oncogenic MOZ-
CBP protein was thought to promote leukemogenesis through aberrant chromatin
acetylation [75]. It was shown that although the translocation breakpoints within CBP
preserves most of its functional domains, though the domain that binds the nuclear
receptor RARAa is lost. The resulting MOZ-CBP fusion protein therefore causes
deregulation of retinoid pathways which play an important role in leukemogenesis [75].

The oncogenic role of CBP and p300 has been described in prostate cancer.
Both CBP and p300 act as coactivators for androgen receptor (AR) protein, a sequence
-specific DNA binding nuclear receptor that regulates ligand-dependent gene
transcription and also plays a role in prostate cancer cellular proliferation [76-78]. CBP

and p300 are both upregulated in prostate cancer and they also induce the transcription
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of AR responsive genes [79]. It was demonstrated that CBP plays a role in the
acquisition of therapy resistance in prostate cancer progression by the regulation of the
action of the anti-androgen hydroxyflutamide [79]. In a separate study, CBP depletion
was shown to have antiproliferation effects on the PC3 cancer cell line [13]. However, in
the C4-2B cell line, p300 appears to be dominant over CBP in the transition from
androgen dependent to androgen depletion independent (ADI) prostate cancer, an
advanced form of prostate cancer [80].

It has also been suggested that overexpression of CBP and p300 may be
involved in the poor prognosis of small cell lung cancer (SCLC) patients through

inhibition of apoptosis and increased ability for lymph vessel formation [81].

B. Role in other Human Diseases

Apart from its role in human cancer types, CBP loss of function has been
observed in different contexts in human neurodegenerative disorders such as
Huntington disease (HD) [82], Alzheimer disease (AD) [83], amyotrophic lateral
sclerosis (ALS) [84], polyglutamine (polyQ) diseases [85], spinocerebellar ataxia type 7
(SCAT7) [86] and spinal and bulbar muscular atrophy (SBMA) [87]. Several reports have
demonstrated that the interaction between the CBP HAT domain and the mutated form
of the huntington protein (htt) causes inhibition of HAT activity which is responsible for
the expanded polyQ aggregates seen in HD conditions [82, 88-89]. In 2003, in a
separate study carried out by Haibing Jiang et al., they found that polyQ-expanded htt
promotes ubiquitination and degradation of CBP [90]. Alternatively, CBP loss of function

in neurological disorders can also be attributed to caspase 6 —induced CBP degradation
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as observed during neuronal apoptosis events [91]. This degradation was shown to lead
to a decrease in histone acetylation and also a decrease in CBP dependent
transcription.

The role of CBP in hepatic gluconeogenesis, a biological process essential in the
maintenance of normal blood glucose levels has been described [92]. The effect of
insulin and the molecular therapeutic effect of metformin, a first line treatment for
diabetes mellitus, lead to CBP phosphorylation at Ser436 [93]. This phosphorylation
event triggers the disassembly of a CREB- TORC2- CBP transcriptional complex
formed on a cAMP responsive element site, thereby inhibiting transcription of
gluconeogenic enzyme genes and ultimately resulting in the suppression of hepatic
gluconeogenesis [92-96]. As demonstrated by Zhou et al., and also by He et al.,
metformin treatment failed to suppress high blood glucose levels in a mouse model with
germline mutation of the CBP phosphorylation site [92, 94]. Their results point to the
importance of CBP phosphorylation by insulin and metformin in the activation and
regulation of hepatic gluconeogenesis.

A role for CBP in long-term memory formation is suggested by the findings that
the histone acetyltransferase property of CBP is necessary for memory consolidation
[97]. Transgenic mice expressing CBP with defective HAT activity show impaired long-
term memory formation that can be rescued by suppression of transgene expression or
by inhibition of histone deacetylase activity, suggestive of the importance of CBP HAT
activity in the activation of genes controlling memory consolidation [97]. Mouse models

have revealed the critical importance of CBP in normal embryonic development as mice
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lacking CBP die at an early embryonic stage as a result of defective blood vessels

formation in the central nervous system [68, 98].

1.5 CBP as a Therapeutic Agent

CBP and its paralog p300 play important roles in the regulation of transcription of
many genes via histone and non-histone protein acetylation [16-20, 22-24]. These
proteins are also critically involved in other cellular physiological processes. Specifically,
aberrant functioning of the HAT domain of CBP and p300 is often associated with some
human diseases and cancer [36, 46, 63, 64]. In addition, loss of function of CBP has
been reported in different neurological disorders [82-87]. As a result, different
ameliorative strategies targeting CBP for the treatment of these anomalies are
constantly being studied.

In an attempt to reverse CBP loss of function found in neurological disorders,
CBP activation was demonstrated to reduce polyQ aggregates and neurodegeneration
as well as improve histone acetylation and CBP-dependent transcription [91]. It has also
been shown that CBP over-expression is sufficient in reversing cellular toxicity in
Huntington's disease models, further linking inadequate amount of CBP to the
development of this disease [99]. Also, it was found that viral delivery of CBP into the
brain of mouse models of Alzheimer’s disease improves both learning and memory
implying that CBP over-expression might be an ideal therapeutic intervention for brain
disorders with CBP loss of function [100].

CBP/B-catenin signaling is important is maintaining drug resistance in acute

lymphoblastic leukemia (ALL), and disruption of this interaction using a specific small
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molecule inhibitor ICG-001, was demonstrated to be sufficient in abrogating the drug
resistance [101]. The therapeutic ability of CBP/B-catenin antagonist was further shown
to be effective in targeting cancer stem cells (CSC) without damaging the somatic stem
cells (SSC), as well as in ameliorating pulmonary and renal fibrosis, and myocardial
infarction [101-105].

Several small molecule inhibitors of CREB-CBP transcription factor/coactivator
complex have been identified including Naphthol AS-TR phosphate (NASTrp) which
was recently found to be a potential therapeutic agent for human lung cancer in
particular [106, 107]. NASTrp is a modified form of the naphtol analog KG-501, initially
identified as an inhibitor of CREB-CBP transcription factor/co-activator interaction [106].
It was demonstrated that NASTrp has inhibitory effects on cell proliferation, colony
formation and anchorage-independent growth in a number of human lung, breast, and
pancreatic cancer cell lines tested. In addition, NASTrp causes induction of
endoplasmic reticulum stress, cell cycle arrest and suppression of autophagy in human

lung cancer cell lines [107].

1.6 The Regulation of CBP Co-activator Role in Transcription

A. Regulation of CBP transcriptional role by other interacting partners

CBP possesses several activation domains and interacts with diverse arrays of
proteins, many of which are transcription factors. As such, many researchers have
reported and speculated the regulation of CBP activities. HAT dependent and HAT-

independent mechanisms enable CBP to co-activate the transcription of target genes
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[21-27]. Because CBP is also involved in other cellular activities, it is not surprising that
its functions are regulated at different levels.

The enzymatic activity of CBP can be regulated via cooperation with other proteins. The
transforming viral protein E1A was first identified as a positive regulator of CBP HAT
enzymatic function by S. Ait-Si-Ali et al. in 1998. These investigators reported that E1A
binds to a region near the HAT domain of CBP causing a conformational change in this
domain that promotes increased catalytic activity [108]. This observation however
contradicts the reports of some other groups that suggest an inhibitory effect of E1A on
CBP HAT function [8, 109].

Transcription factors that promote cellular differentiation such as the hepatocyte nuclear
factor-1a (HNF-1a) and the nuclear factor, erythroid-derived 2 (NF-E2) have been
shown to stimulate the acetyltransferase activity of CBP in both in vivo and in vitro
assays [9, 110]. Some other transcription activators, for example, the Epstein-Barr
virus-encoded basic region zipper (b-zip) protein, Zta and C/EBPa have also been
shown to augment the acetylation of nucleosomal histones by CBP [110]. On the other
hand, cellular proteins such as Twist and the E1 A-like inhibitor of differentiation (EID-1)

demonstrate inhibitory effects on CBP HAT function [109, 111].

B. Regulation of CBP transcriptional role by post translational modifications

Post translational modification is an enzymatic covalent reaction that occurs after
a protein is synthesized. Most proteins undergo some type of modification following
translation and these modifications can influence a protein's cellular localization and

activities. CBP undergoes post translational modifications such as phosphorylation,
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acetylation, ubiquitination, sumoylation, methylation and several lines of evidence have
pointed to these modifications as important players in the regulation of CBP functions

[36, 108, 112-119].

Phosphorylation:

Studies show that phosphorylation regulates certain CBP functions in response
to different cellular signaling pathways [108, 112]. Phosphorylation by cyclin E-cyclin
dependent kinase 2 (Cdk2) complex (cyclin E-Cdk2) modulates CBP HAT enzymatic
activity in a cell-cycle dependent manner [108]. The phosphorylation site was mapped
to the carboxyl terminal of CBP and treatment of phosphorylated CBP with phosphatase
suppressed its enzymatic activation.

Calcium/calmodulin-dependent protein kinase type IV (CaMKIV), a
serine/threonine protein kinase phosphorylates CBP on Ser301. This CaMKIV-mediated
phosphorylation as demonstrated by Impey and his group facilitates CREB/CBP-
dependent transcription while CaM kinase inhibitors blocked both the phosphorylation
and CBP-dependent transcription events [112].

It has also been shown that CBP can be phosphorylated by MAP kinases. In vitro
studies indicate that phosphorylation by p44 MAP kinase/ERK1 induces a
conformational change in CBP which ultimately stimulates its acetyltransferase activity
[113]. The phosphorylation site is at the carboxyl terminal of CBP, a region similar to
that which is involved in CBP HAT activation upon phosphorylation by cycE-cdk2 [108,

113].
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Further, phosphorylation of CBP by nuclear IKKa switches the binding preference
of CBP from p53 to NF-kB [114]. This IKKa- mediated CBP phosphorylation not only
increases CBP HAT function, but also enhances NF-kB-mediated gene transcription,
promotes cell proliferation and in addition, contributes to tumorigenesis in the human

cancer cell lines tested [114].

Acetylation:

CBP autoacetylation stimulates its interaction with other acetylated protein
substrates such as acetylated histone proteins and acetylated p53 [115-117]. The acetyl
lysine —binding property of the CBP bromodomain promotes its anchorage to acetylated
chromatin and non-chromatin bound templates or to other acetylated transcription
activators [115-117]. A study showed that autoacetylation of CBP induces a
conformational change that positions CBP HAT domain and the bromodomain for easy
recognition by their binding partners [117]. It was demonstrated in the study that CBP
autoacetylation is necessary for CBP bromodomain to bind to acetylated lysines.
Incubation of insect purified recombinant full-length CBP with acetyl CoA not only
activated the ability of CBP to bind to unacetylated histone peptides via its HAT domain,
but also its ability to bind to acetylated peptides via its bromodomain [117]. This CBP
autoacetylation activity facilitates CBP HAT function and bromodomain mediated

interactions which in turn assist in regulating transcription processes of target genes.
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Ubiquitination:

Ubiquitination is the reversible covalent attachment of the short protein modifier
ubiquitin to lysine residues of target proteins. The stability and function of a protein can
be modulated by its ubiquitination status. Ubiquitination disrupts CBP function in
neuronal cell viability in Huntington disease [90, 99]. Studies indicate that co-localization
of CBP with the expanded poly - Q htt protein in nuclear aggregates in HT22
hippocampal neuronal cells, facilitates CBP degradation and the increase in the cellular
toxicity of poly - Q htt aggregates. This disruption of CBP function by ubiquitination
leads to reduction in the transcription of target genes [90, 99].

CBP like its paralogue p300, encode an intrinsic E3 ubiquitin ligase activity [118,
121]. Although the relevance of CBP autoubiquitination remains unclear, it is known that
the regions required for this autoubiquitination process is also required for the p53-
directed E4 polyubiquitin activity [118]. The first 616 amino acids of CBP, a region
containing the C/H1-TAZ1 domain is required for its autoubiquitination and also
sufficient to polyubiquitinate p53-monoUb conjugates [118]. Polyubiquitination of p53
leads to its proteasome-mediated degradation thereby maintaining its physiologic levels
under basal cell conditions. It can therefore be speculated that CBP autoubiquitination
facilitates its E4 polyubiquitination activity towards p53.

The role of Promyelocytic leukemia (PML) nuclear bodies in regulating CBP
steady state and function has been described [122]. PML nuclear bodies are nuclear
punctuate sub-structures that recruit a variety of unrelated proteins. PML is reported to

be involved in the degradation of CBP in an ubiquitin dependent manner with the use of
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histone deacetylase inhibitor, valproic acid which increases the co-localization of CBP to
PML bodies and to ubiquitin nuclear speckles. This was shown to promote the

subsequent degradation of CBP by the ubiquitin-proteasome pathway [122].

Sumoylation:

Sumoylation is an important post-translational modification that regulates the
function of many proteins involved in various cellular processes. This modification can
either occur by the covalent attachment of a member of the SUMO (small ubiquitin-like
modifier) family of proteins to lysine residues in specific target proteins, or by the non-
covalent SUMO binding via SIMs (SUMO-interacting motifs) [123, 124]. Four SUMO
paralogues designated SUMO1-4 exist in mammals [125] and also, sumoylation
process can be readily reversed by the action of a family of sentrin/SUMO-specific
protease (SENP) enzymes [125, 126].

SUMO modification has become an important mechanism in regulating the
activities of many transcriptional activators, including CBP, which can be modified
covalently by SUMO-1 at lysine residues 999, 1034, 1057, both in vitro and in vivo
[119]. SUMO modification of CBP facilitates its interaction with Daxx protein, a
transcriptional co-repressor found in the nucleus [127]. The SUMO-dependent
association of CBP with Daxx mediates the recruitment of histone deacetylase 2
(HDAC?) leading to transcriptional repression of CBP targets [119]. In a separate study,
it was demonstrated that SUMO modification of CBP was necessary for its association
with nuclear proteins, its accumulation in nuclear bodies and its role as a transcriptional

co-activator [128].
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Methylation:

This type of post-translational modification involves the transfer or addition of
methyl group to a substrate. Methylation is a well-studied post-translational modification
and enzymes called methyltransferases catalyze the process. Protein methylation
usually occurs on arginine or lysine amino acid residues and studies have shown the
importance of this modification in epigenetic inheritance and also in human cancers
[129].

Methylation plays a role in the regulation of the co-activation activity of CBP. In vitro and
in vivo studies from two separate laboratories have shown that the KIX domain of CBP
located on its amino terminal region and also specific arginine residues (which are
conserved in p300) outside of the KIX domain are methylated by CARMZ1(co-activator
associated arginine methyltransferase) [120, 129]. Functional studies by Chevillard-Briet
et al., reveal that methylation of CBP by CARML1 regulates CBP co-activating functions

in steroid hormone-induced gene activation [120].

Since diverse CBP activities can be modulated by CBP-associating proteins and
different post-translational modifications, there is possibility of crosstalk between these
different mechanisms, although no direct evidence presently exists to support this.
Given the fact that CBP can be readily modified under various cell conditions, a
particular type of post- translational modification may change CBP conformation, which
in turn may control its protein binding preference, subsequently leading to regulation of
specific functions. Alternatively, one type of CBP modification may be a requirement for
a second type of post-translational modification, as seen with some other proteins. For

example, in response to DNA damage, the ataxia-telangiectasia mutated (ATM) and
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ATM-related Rad3 (ATR) kinases phosphorylate p53. Phosphorylation of p53 is
necessary for its interaction with and acetylation by CBP/p300, which ultimately
promotes the transactivation of p53 [28-29, 130-132]. A separate study also showed
that acetylation of Foxol, a transcription factor involved in many biological processes,
increases the level of its phosphorylation, which subsequently regulates Foxol function
(133).

With all these mentioned evidences, cross talk between the post-translational
modifications of CBP may possibly modulate its protein-protein interactions which in

turn, may regulate CBP activities and stability.

1.7 E3and E4 Ubiquitin Ligases

Protein ubiquitination is a regulatory post translational modification that requires
the collaboration of the cascading events of the E1 activating enzyme, E2 conjugating
enzyme and E3 ubiquitin ligase. This process was first identified as a targeting signal for
protein degradation via the proteasomal pathway [134], (Fig. 1.3). Ubiquitination also
mediates the non-degradative regulation of other cellular processes such as signal
transduction, enzymatic activation, cellular localization and DNA repair [135-138]. In the
human genome, two E1 enzymes, about 40 E2 enzymes and over 600 putative E3
enzymes have been identified [139].

The first mammalian ubiquitin E3 ligase, E6AP, was identified in 1990. EGAP is a
100kDa protein that catalyzes the E6-dependent transfer of ubiquitin to p53, targeting it
for degradation by the 26S proteasome [140]. EGAP belongs to the HECT (Homologous

to E6-AP Carboxyl Terminus) family of E3s which contains the active-site cysteine in its
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C-terminal lobe that forms a thioester with ubiquitin [141]. Alternatively, the RING
(Really Interesting Gene) finger family of E3s forms a scaffold to facilitate the transfer of
ubiquitin from the E2, directly to the protein substrate [142], (Fig. 1.3). A well
characterized RING-type E3 ubiquitin ligase is Mdm2 (murine double minute 2) protein.
Mdmz2 is an important regulator of p53, that in the absence of stress, maintains low
cellular levels of p53 by ubiquitinating p53, sending it for proteasomal degradation [143].
p53 in turn regulates Mdm2 transcription, thus, these two proteins form an
autoregulatory negative feedback loop [142-144].

The proteolysis of some proteins requires multiubiquitin chain assembly. The
polyubiquitin conjugating factor named E4 was reported to be necessary in catalyzing
the polyubiquitin chain assembly needed for proteasomal degradation [145]. E4s
function in concert with the E1, E2 and E3 enzymes by targeting proteins already
modified with a single ubiquitin on one lysine residue, (monoubiquitinated (mono-Ub)),
or by targeting proteins already modified by ubiquitin on multiple lysine residues
(oligoubiquitinated (oligo-Ub)) [146], (Fig. 1.3). In 1999, the UFD2 protein of yeast was
identified as the first E4 enzyme. This protein contains a U-box (UFD2-homology
domain) domain which shares structural similarity with the canonical E3 RING finger
domain [145]. A growing number of E4 family members are being identified and some of
the reported members include the regulatory protein NOSA, the U-box containing
protein, CHIP (C-terminus of Hsc70-interacting protein), which promotes the
ubiquitinating activity of Parkin, BUL1/BUL2 complex, and the co-activators p300 and

CBP [118, 120, 144-146].
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Polyubiquitin chain formation uses different types of ubiquitin-ubiquitin chain
linkages that could result in proteolytic and non-proteolytic functions. The two major
ubiquitin chain linkages occur via Lys48 and Lys63 (Fig. 1.4). Ubiquitin chains linked by
Lys48 have been generally accepted to target substrates for proteasomal degradation.
Lys63-linked chains, in addition to their proteolytic function, are also involved in other
non-proteolytic cellular activities such as intracellular trafficking, signal transduction,
DNA damage repair, ribosomal biogenesis [134-137, 147, 148], (Fig. 1.4). The
importance of these ubiquitin ligases in diverse cellular activities and in maintaining

homeostasis cannot be underestimated.

26

www.manaraa.com



( ';:'JT %
,41»77

T e
i__'__'.)'

V Proteasome

Figure 1.3 Schematic representation of protein ubiquitination and proteasome degradation
pathway. In the first step, ubiquitin (Ub) gets activated by the Ub-activating enzyme (E1) in the presence
of ATP. Next, activated Ub is transferred to one of several dozens of Ub-conjugating enzymes (E2) and
then to one of the over 600 substrate-specific Ub-ligases E3 (HECT) or E3 (RING) which finally attaches
Ub to the substrate. In some cases, additional elongation factors, termed E4 enzymes are required to

catalyze the extension of short ubiquitin chains targeting the substrate for proteasomal degradation.
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Figure 1.4 Schematic representation of different types of ubiquitin modifications on protein
substrate and their functional outcomes.
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1.8 The Dual Roles of CBP in p53 Regulation

The tumor suppressor protein, p53 also known as “the guardian of the genome”,
is a well-characterized protein whose activation is controlled by interaction with other
proteins and also by post-translational modifications [28-30, 164, 165]. Its activation in
response to myriad stressors leads to events such as; inhibition of angiogenesis,
activation of DNA repair, induction of cell growth arrest or apoptosis depending on the
physiological cell condition and cell type [150, 151, 161]. As such, there are multiple
layers of regulatory mechanisms involved in p53 signaling pathway.

Under basal cell conditions, the low steady state levels of p53 are maintained by
its negative regulator Mdm2, an E3 ligase which ubiquitinates p53 marking it for
degradation by the proteasome [144]. The ubiquitination property of Mdm2 depends on
its C-terminal RING finger domain by which it catalyzes addition of a single ubiquitin
moiety (mono-ubiquitination) on p53 [152]. Monoubiquitinated p53 moieties are
exported out of the nucleus into the cytoplasm where polyubiquitination activities by E4
ligases lead to its proteasomal dependent degradation [118, 121]. It is therefore clear
that although Mdm?2 is required to keep p53 levels low, it may not be sufficient enough
for both p53 ubiquitination and degradation [153]. Mdm2 on the other hand, also
contributes to the stability and transactivation of p53 via a separate ubiquitination

independent mechanism [154].
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A. Role of CBP in p53 degradation

The degradation and stability of p53 can be further regulated by the
compartmentalized activities of CBP and its paralog, p300 under different cellular
conditions. The relationship between p53 and CBP/p300 is therefore quite complex as a
result of these compartmentalized activities of CBP/p300 [20, 22]. The N-terminal region
of CBP and p300 containing the first 616 amino acids harbor a conserved Zn2+ -binding
Cys-His-rich region which functions as putative E3 and E4 ubiquitin ligases [118]. In
vivo and in vitro evidence from previous studies from our laboratory revealed that the
intrinsic E3 ligase activity of CBP drives its own ubiquitination while the E4 ligase
activity directs p53 polyubiquitination and its subsequent degradation [118].
In unstressed cells, CBP and p300 drive polyubiquitination of Mdm2-mediated
monoubiquitinated p53 [118, 121]. As stated earlier, monoubiquitination of p53 by
Mdm2 leads to its export from nucleus to cytoplasm. Cytoplasmic CBP and p300 act as
E4 ligases by extending the ubiquitin chains on p53 tagging it for degradation [118, 121,
153]. Taken together, Mdm2 co-operates with CBP and p300 to catalyze

polyubiquitination and proteasomal degradation of p53.
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B. Role of CBP in p53 transactivation

CBP participates in the transcriptional activation of p53 by acetyltransferase
activities. CBP/p300 in addition to their intrinsic histone acetyltransferase property,
possess the ability to acetylate and modulate transcription of non-histone proteins such
as p53. In fact, p53 was the first identified non-histone protein acetylated by CBP/p300
and several initial studies have pointed to the positive role acetylation plays in p53
stability following cellular stress [22, 28, 30]. p53 binds both N and C-termini of CBP
under different cellular conditions. Diverse cellular insults can trigger p53 activation that
leads to multiple outcomes such as cell cycle arrest, apoptosis, senescence, autophagy
[150, 151]. In response to DNA damage, p53 becomes phosphorylated by ATM/ATR in
its amino-terminal region and these phosphorylation events are believed to prevent
binding by Mdm2 [155]. It has also been shown that phosphorylation of p53 at Ser 15
stimulates its interaction and subsequent acetylation by CBP/p300 on multiple carboxyl-
terminal lysine residues which in turn, promotes p53 transcriptional functions [127, 155].
In addition, p53 acetylation is also important in other p53 activities necessary for its
checkpoint responses to different stress sensors [156, 157]. In an early study, it was
revealed that mutations that abolished phosphorylation at Ser 15 reduced p53
acetylation events and caused p53-dependent transcriptional defects [155]. A separate
study also showed that inhibition of p53 deacetylation promotes p53 stability further
indicating the importance of CBP/p300 mediated acetylation in p53 stability and
transcriptional function [156]. Both CBP and p300 are more abundant in the nucleus

where p53 accumulation and acetylation mostly occurs in response to cellular stress.
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These dual roles of CBP and p300 in p53 regulation make them important targetable
proteins in the p53 pathway and in cancer therapy. It also raises the questions of the

mechanism and types of regulators involved in these compartmentalized activities of

CBP/p300 towards p53.
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Figure 1.5 Schematic representation of the dual roles of CBP in p53 regulation
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1.9 Summary

More than 20 years of research on CBP have produced comprehension of the
co-activator role of CBP in the transcription of target genes and the diverse mechanisms
that possibly regulate this role. Despite all this work, additional studies are still
necessary to further elucidate other evolving underlying factors involved in the
modulation of the transcriptional functions of CBP in response to diverse cellular
conditions. In addition to its transcriptional roles, CBP participates in a diverse array of
other cellular processes such as cell growth and development, cell cycle, apoptosis, and
response to cellular stress sensors. It is therefore not surprising that aberrant
functioning of CBP is implicated in many human diseases and cancers. As such, CBP
has become a promising candidate target for therapeutic strategies. CBP’s association
with numerous other proteins also adds to the complexity of fully understanding
potential regulators of its many functions.

Further, CBP plays vital dual roles in the regulation of one of the most widely and
well studied tumor suppressor proteins, p53, which is found to be mutated in more than
50% of human cancers. CBP is required to promote the maintenance of physiologic
levels of wild typep53 and is also needed to promote the transactivation of p53 in
response to stress. It is known that CBP and its paralogue p300, possess cytoplasmic
but not nuclear, E3 autoubiquitination and p53-directed E4 polyubiquitination properties
under normal physiologic cell condition. However, the regulation of the

compartmentalized ubiquitin properties of CBP has not been examined. What factors
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trigger cytoplasmic CBP ubiquitination activities but not nuclear CBP ubiquitination
activities? Are there differential CBP interacting partners or differential CBP post-
translational modifications involved in these ubiquitination activities? In addition, what
effect does DNA damage have on CBP ubiquitination activities? The experiments in this
thesis were designed to seek the answers to these questions. Understanding the
mechanisms that govern the differential CBP ubiquitin activities, especially towards p53,
may provide novel strategic interventions in the p53 signaling pathway of cancer and

also shed more light on cancer etiology.
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Chapter 2: Activation of Nuclear CBP E3 Autoubiquitination Activity and

Differential CBP Post-Translational Modifications in Response to DNA Damage

2.1 Introduction

The transcription of many target genes is dependent on the co-activator function
of the histone acetyltransferases, CBP and its paralogue, p300. Different models have
described the involvement of CBP and p300 in the modulation of transcription of many
target genes. Such models include; histone acetylation through the CBP/p300 intrinsic
HAT domain, acetylation of non-histone proteins and transcription factors, physical
scaffolds for basal transcription machinery, and recruitment of components of RNA
polymerase Il machinery [21-27], (Fig. 1.2). The activities of CBP extend to other
cellular events such as growth and development, response to stress signals, cell cycle,
and apoptosis [36-41].

Previous studies from our laboratory reveal that CBP possesses cytoplasmic, but
not nuclear intrinsic E3 ubiquitin ligase autoubiquitination property under physiologic
cellular conditions [118]. Interestingly, CBP is more abundant in the nucleus than the
cytoplasm; nevertheless, CBP autoubiquitination is exclusively cytoplasmic. The first
451 amino acids of CBP, which includes the C/H1-TAZ1 domain, encode the sequences

responsible for this autoubiquitination activity. This domain is one of the Zn?*-binding
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cys-his-rich regions of CBP and published evidence indicates that Zn-fingerlike domains
can function as active E3 ligases [159, 160]. Earlier work indicated that the CBP C/H1-
TAZ1 domain encodes an active non-canonical E3 ligase property with no structural
similarities with other recognized RING, HECT or U-box E3 domains [118, 159, 160].
Data from previous work also revealed that CBP autoubiquitination does not lead to its
degradation but instead, sequences that were found to be required for the
autoubiquitination activity were also necessary for the cytoplasmic localized CBP E4
ubiquitin ligase activity, which promotes both in-vivo and in-vitro polyubiquitination and
proteasome-dependent degradation of p53 under physiologic cell conditions [118].
Activation of the apical serine/threonine kinases ATM and ATR, in response to
DNA damage, leads to phosphorylation of key protein targets that results in activation of
checkpoint signaling events which can cause cell cycle arrest, DNA repair, or apoptosis
[161-163] (Fig. 1.4). These signaling events are tightly regulated to ultimately assist in
maintaining proper cell homeostasis. Distortions and aberrant functioning at any level in
these signaling events can cause severe consequences. DNA damage sometimes
induces post-translational modifications of proteins which can confer new functions or
modulate existing functions of the modified proteins [130,132, 137, 154]. Even though it
is known that post-translational modifications such as phosphorylation, acetylation,
ubiquitination, sumoylation and methylation influence the co-activation role of CBP
under physiologic cellular conditions [112-114, 118-121], the effect of DNA damage on
CBP post-translational modification status it is not fully understood. The relevance of
these post-translational modifications has been mostly studied in the co-activator role of

CBP in the transcription of genes. However, the significance and synergistic effects, if
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any, of these modifications in the regulation of other non-transcriptional activities of CBP
has not been fully examined.

Based on the observation that CBP engages in compartmentalized ubiquitination
activities under physiologic cell conditions, we sought to determine the effect of DNA
damage on the compartmentalized CBP autoubiquitination activity. We further
determined whether there are differential post-translational modifications between
nuclear and cytoplasmic pools of CBP under normal physiologic cell conditions and in
response to DNA damage. We show that DNA damage induced by gamma radiation,
and also by genotoxic agents, causes activation of the otherwise dormant nuclear CBP
E3 autoubiquitination activity. Cytoplasmic CBP E3 autoubiquitination was retained in
response to all DNA damaging agents tested. In addition, activation of ATR kinase
activity in response to DNA damage was necessary for the activation of the otherwise
dormant nuclear CBP E3 autoubiquitination. Further, we identified differential post-
translational modifications (PTM) of CBP between the cytoplasmic and nuclear
compartments and also differential CBP PTMs in the presence and absence of DNA

damage.
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2.2 Materials and Methods

Cell Culture, Induction of DNA Damage and Inhibitors

U20S and H1299 cells were grown and maintained in DMEM and RPMI respectively,
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin. Cells were allowed
to grow to 90% confluency before treatment with DNA damaging agents. Cells were
treated where noted, with 10gray gamma irradiation, 2uM doxorubicin or 50uM
etoposide. All the genotoxic agents were purchased from Sigma Aldrich and
reconstituted according to the manufacturer’'s recommendation.

For inhibition of the kinase activities of ATM and ATR, cells were treated with 3uM KU-
60019, or 10mM VE-821 (Selleck chemicals) respectively, for 30min prior to DNA

damage induction.

Subcellular Fractionation

Cytoplasmic and Nuclear extracts of U20S and H1299 cells were prepared using the
NE-PER Nuclear and Cytoplasmic Extraction kit (Thermo Fisher). Protein concentration
was determined using the bicinchoninic acid (BCA) protein assay kit (Thermo Fisher)

compared to bovine serum albumin (BSA) protein standards (Thermo Fisher).

SiRNA Transfection
U20S cells were transfected with 30nmoles siRNA (final concentration) using

Lipofectamine 2000 (Invitrogen). ATR siRNA was purchased from Ambion Life
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Technologies. 72 hours after transfection, cells were either harvested for western blot
analysis or treated with etoposide followed by subcellular fractionation and in-vitro E3

assays of CBP.

In vitro E3 Assays of CBP

CBP was immunoprecipitated from 0.8mg cytoplasm or 0.3mg nuclear fractions diluted
with NP40 lysis buffer [25mM Tris HCI (pH7.5), 150 mM NacCl, 1uM ZnClI2, 1% igepal
(NP40)], supplemented with protease inhibitors using A-22 antibody (Santa Cruz)
followed by protein A agarose. The IPs were washed in NP40 lysis buffer three times
followed by two washes in Ub buffer (25mM HEPES, pH7.4, 10mM NacCl, 3mM MgCl,,
0.05% Triton X-100, 0.5mM DTT, 3mM Mg-ATP). The washed and equilibrated IPs
were then incubated with 100ng E1 (rabbit; Boston Biochem), 25ng E2 (UbcH5a,
human recombinant; Boston Biochem), and 5ug Ub (human recombinant; Boston
Biochem) for 90min at 37°C. Reactions were stopped by the addition of LDS sample
buffer, followed by SDS-PAGE and immunoblotting using CBP and Ub antibodies

(Santa Cruz).

MudPIT Analysis

U20S cells were fractionated into cytoplasmic and nuclear fractions followed by CBP
immunoprecipitation from both fractions using anti CBP conjugated agarose beads.
Eluates were separated by SDS-PAGE followed by coomassie staining. Mass
spectrometry analysis was carried out at the proteomics core of the University of

Virginia (UVA). Briefly, the gel piece was transferred to a siliconized tube and washed
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and destained in 200uL 50% methanol for 3hours. The gel pieces were dehydrated in
acetonitrile, rehydrated in 30pL of 20mM dithiolthreitol in 0.1M ammonium bicarbonate
and reduced at room temperature for 0.5h. The DTT solution was removed and the
sample alkylated in 30pL 50mM iodoacetamide in 0.1M ammonium bicarbonate at room
temperature for 0.5h. The reagent was removed and the gel pieces dehydrated in
100puL acetonitrile. The acetonitrile was removed and the gel pieces rehydrated in
100pL 0.1M ammonium bicarbonate. The pieces were dehydrated in 100uL acetonitrile,
the acetonitrile removed and the pieces completely dried by vacuum centrifugation. The
gel pieces were rehydrated in 20ng/pL trypsin in 50mM ammonium bicarbonate on ice
for 10min. Any excess enzyme solution was removed and 20puL 50mM ammonium
bicarbonate added. The sample was digested overnight at 37°C and the peptides
formed extracted from the polyacrylamide in two 30uL aliquots of 50% acetonitrile/ 5%
formic acid. These extracts were combined and evaporated to 15uL for MS analysis.
The LC-MS system consisted of a Thermo Electron Orbitrap Velos ETD mass
spectrometer system with a Protana nanospray ion source interfaced to a self-packed
8cm x 75um id Phenomenex Jupiter 10um C18 reversed-phase capillary column. 7uL
aliquots of the extract were injected and the peptides eluted from the column by an
acetonitrile/ 0.1M acetic acid gradient at a flow rate of 0.5uL/min over 1.2hours. The
nanospray ion source was operated at 2.5kV. The digest was analyzed using the rapid
switching capability of the instrument acquiring full scan mass spectra to determine
peptide molecular weights followed by product ion spectra [20] to determine amino acid
sequence in sequential scans. The data were analyzed by database searching using

the Sequest search algorithm against IPI Human.
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SDS Gel Band Trypsin Digestion and Peptide Mass Spectrometry Analysis

Gel bands were excised from the SDS PAGE gel, cut into 1mm cubes and washed
with100mM ammonium bicarbonate (AB) pH7.4 (Sigma). The gel cubes were then
dehydrated in the speed vac 20minutes and rehydrated in 20pul of 12.5ng/pl trypsin
(Promega, Madison WI) in 100mM AB with 1% proteaseMAX surfactant, (Promega,
Madison WI) for 2hours at 37°C. The supernatant transferred to a new tube and
combined with the supernatant of a 10minutes extraction of the gel pieces with 100%
acetonitrile. The peptide solution was then speedvaced to dryness and resuspended in
100mM AB. Peptides were loaded on a self-packed fused silica (polymicro
technologies) trap column (360micron 0.d. X 100micron i.d.) with a Kasil frit packed with
5-15micron irregular phenyl C-18 YMC packing. The trap column was connected to an
analytical column (360micron X 50micron) with a fritted tip at 5 micron or less (New
Objective) packed with 5um phenyl C-18 YMC packing. Peptides were trapped and then
eluted into a Thermo Finnigan LCQ deca XP max mass spectrometer with an
acetonitrile gradient from 0 % to 80 % over one hour at a flow rate of between 50-150nl/
minute. The mass spectrometer was operated in data dependent mode. First a MS scan
from mass 300-1600m/z or 400-1800m/z was collected to determine the mass of
peptides eluting at that time, then the top five most abundant masses were fragmented
into MS/MS scans and placed on an exclusion list for Iminute. This sequence MS
followed by 5 MS/MS scans with exclusion was repeated throughout the hour gradient.
The approximately 5000 MS? scans were then searched with SEQUEST using a human

non-redundant data base down loaded from NCBI. The following variable modifications
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was considered for PTM’s oxidized (methionine), phosphorylated (serine, threonine and
tyrosine), GLC nac modified (threonine) and acetylated (lysine) XCoor cut off of (1.25,
1.75, 2.25) for (+1, +2, +3) peptide charge states was applied. MS? scans passing this

cut off were manually verified.

PTM’s Searches of UVA Data

PTM searches were done at Virginia Commonwealth University at the mass
spectrometry core facility. Three SEQUEST searches were performed on each sample
to evaluate PTM’s and displayed with scaffold. First, acetylated lysine in combination
with Glc nac modification of threonine were considered. Secondly, the combination of
phosphorylated serine (S), threonine (T) and tyrosine (Y) as well as methylation or
acetylation of lysine were considered. Finally, phosphorylation of S, T and Y with
methylation of lysine were identified. Spectra scoring above 90% confidence were

manually reviewed and confirmed as accurate.

Western Blotting, Immunoprecipitation and Immunofluorescence

For western blot analyses, cytoplasmic and nuclear extracts of cells were prepared
using NE-PER fractionation kit followed by SDS-PAGE and immunoblotting with the
indicated antibodies. CBP, Ub, ATM, pATM (ser1981), CHK1 antibodies were
purchased from Santa Cruz. Tubulin antibody was from Sigma, pCHK1 (ser345) and
lamin a/c were from cell signaling.

For CBP immunoprecipitation, cytoplasmic and nuclear extracts were diluted with NP40

lysis buffer [25mM Tris HCI (pH 7.5), 150mM NacCl, 1uM ZnCl,, 1% igepal (NP40)],
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supplemented with protease inhibitors followed by overnight incubation with A-22
antibody (Santa Cruz) and protein A agarose. The overnight immunoprecipitates were
washed five times in lysis buffer and eluted using LDS loading buffer and DTT. Eluates
were subjected to SDS PAGE electrophoresis and western blot signals were quantified
after visualization of primary antibody by fluorescent-labeled secondary antibody and
detection by Odyssey blot scanner (LiCor), using ImageJ National Institutes of Health
(NIH) software.

For Immunofluorescence, cells were seeded in 4 chambered slides for 24hrs followed
by treatment with 2uM doxorubicin for 3hrs. Cells were fixed in 4% paraformaldehyde
(Thermo Scientific) in PBS for 15minutes at room temperature. Following three washes
with PBS, cells were permeabilized with 0.2% TritonX-100 in PBS for 10minutes at
room temperature. Cells were washed three times with PBS followed by 1hour blocking
in Odyssey blocking buffer (Li-Cor, 927-4000) diluted 1:1 with PBS at room
temperature. Slides were then incubated overnight at 4°C in primary antibody (anti-
CBP, A-22, Santa Cruz) diluted in blocking buffer containing 0.2% TritonX-100.
Following three 5 minute washes with PBS, slides were incubated for 1hour at room
temperature in the dark in secondary antibody (anti rabbit IgG-CFL 488) diluted in
blocking buffer containing 0.2% TritonX-100. Slides were washed three times with PBS
followed by mounting with prolong diamond antifade mountant containing DAPI (Life
Technologies/Molecular Probes). Images were acquired using the EVOS AMG
fluorescent microscope and representative images are shown at the same exposure

and magnification.
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Statistical Analysis
Statistical comparisons were made using Student’s t-test; p < 0.05 was considered

significant and p< 0.01 was considered very significant.
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2.3 Results

DNA Damage Induces Nuclear CBP Autoubiquitination

CBP has previously been shown to exhibit cytoplasmic but not nuclear E3
autoubiquitination activity under unstressed cellular conditions [118]. The effect of DNA
damage on CBP autoubiquitination activity however, was not studied. To assess the
effect of DNA damage on CBP E3 autoubiquitination activity, U20S cells were treated
with the following DNA damaging agents; doxorubicin, etoposide, and gamma
irradiation for 5hrs, followed by CBP immunoprecipitation and in vitro E3 ligase activity
analysis from cytoplasmic and nuclear fractions. Our results revealed activation of the
otherwise dormant nuclear CBP E3 autoubiquitination in response to all the different
DNA damaging agents, compared with untreated cells (Fig. 2.1, 2.2, 2.3). We however,
did not observe any significant changes in cytoplasmic CBP autoubiquitination in
response to DNA damage. Demonstrating that these results were not cell-type specific,
H1299 cells were treated with doxorubicin for 5hrs followed by CBP
immunoprecipitation and in vitro E3 ligase activity. Similar to the observation in U20S
cells, doxorubicin induced activation of nuclear CBP E3 autoubiquitination in H1299

cells (Fig. 2.4).
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Figure 2.1 Activation of nuclear CBP autoubiquitination in response to doxorubicin. U20S cells
treated with doxorubicin (2uM) for 5hrs were harvested for CBP immunoprecipitation from cytoplasmic
and nuclear fractions using anti CBP (A-22, Santa Cruz) antibody at 4°C overnight followed by in vitro
CBP E3 autoubiquitination assay and immunoblotting with CBP and Ub antibodies. Graph shows
quantification of ubiquitination signal by densitometry, normalized to cytoplasmic fraction without
doxorubicin. Graph represents mean * SEM for three independent experiments. **p<0.01.
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Figure 2.2 Activation of nuclear CBP autoubiquitination in response to etoposide. U20S cells
treated with etoposide (50uM) for 5hrs were harvested for CBP immunoprecipitation from cytoplasmic and
nuclear fractions using anti CBP (A-22, Santa Cruz) antibody at 4°C overnight followed by in vitro CBP E3
autoubiquitination assay and immunoblotting with CBP and Ub antibodies. Graph shows quantification of
ubiquitination signal by densitometry, normalized to cytoplasmic fraction without etoposide. Graph
represents mean + SEM for three independent experiments. **p<0.01.
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Figure 2.3 Activation of nuclear CBP autoubiquitination in response to gamma irradiation (IR).
U20S cells were gamma irradiated (10 gray) for 5hrs and harvested for CBP immunoprecipitation from
cytoplasmic and nuclear fractions using anti CBP (A-22, Santa Cruz) at 4°C antibody overnight followed
by in-vitro CBP E3 autoubiquitination assay and immunoblotting with CBP and Ub antibodies. Graph
shows quantification of ubiquitination signal by densitometry, normalized to cytoplasmic fraction without

IR. Graph represents mean + SEM for three independent experiments. *p<0.05.
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Figure 2.4 Activation of nuclear CBP autoubiquitination in response to doxorubicin in H1299 cells.
H1299 cells were treated with doxorubicin for 5hrs and harvested for CBP immunoprecipitation from
cytoplasmic and nuclear fractions using anti CBP (A-22, Santa Cruz) at 4°C antibody overnight followed

by in-vitro CBP E3 autoubiquitination assay and immunoblotting with CBP and Ub antibodies. Lysates

were immunoblotted with the indicated antibodies.
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Activation of ATR Kinase Activity is Necessary for DNA Damage-Induced Nuclear
CBP Autoubiquitination

The serine/threonine kinases, ATM and ATR coordinate several signaling
cascade events in response to DNA damage. Activation of these kinases result in the
phosphorylation of several key proteins that initiate the DNA damage checkpoint,
ultimately leading to cell cycle arrest, DNA repair or apoptosis [161, 162], (Fig. 1.4). The
ATM-Chk2 signaling pathway is activated in response to ionizing radiation and
genotoxic drugs that cause DNA double strand breaks, while the ATR-Chk1 signaling
pathway responds to ionizing radiation and agents that cause stalling of replication forks
and generation of single stranded DNA breaks [163]. We tested whether the activation
of ATM and ATR kinases were necessary for DNA damage induced nuclear CBP E3
autoubiquitination. U20S cells were treated with vehicle or with either the ATM kinase
inhibitor, KU-60019, or the ATR kinase inhibitor, VE-821, for 30 minutes prior to
treatment with doxorubicin or etoposide, respectively, followed by CBP
immunoprecipitation and in vitro CBP E3 autoubiquitination assay from the nuclear
fraction. Inhibition of ATM kinase activity had no effect on DNA damage induced nuclear
CBP E3 autoubiquitination (Fig. 2.5). Inhibition of ATR kinase activity however, led to a
decrease in the activation of etoposide-induced nuclear CBP E3 autoubiquitination
event (Fig. 2.6). To further define the role of ATR signaling in the activation of nuclear
CBP ES3 autoubiquitination in response to DNA damage, we transiently silenced ATR in

U20S cells using siRNA followed by CBP immunoprecipitation and in vitro CBP E3
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ubiquitin ligase assay. Down regulation of ATR using siRNA led to a significant
reduction in the activation of nuclear CBP autoubiquitination in response to etoposide-

induced DNA damage compared with cells treated with control siRNA (Fig. 2.7).
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Figure 2.5 ATM kinase activity is not necessary for DNA damage-induced nuclear CBP
autoubiquitination. U20S cells were treated with ATM kinase inhibitor Ku-60019 for 30mins followed by
treatment with doxorubicin for 5hrs. Cells were harvested for CBP immunoprecipitation from nuclear
fraction using anti-CBP antibody at 4°C overnight. The overnight IPs were washed and incubated with
ubiquitin reaction components; E1, E2, Ub, ATP- Mg2+ for 90minutes followed by SDS-PAGE and western
blot analysis. Lysates from nuclear fraction were immunoblotted with the indicated antibodies.

53

www.manharaa.com




Nuclear Fraction Lysates

Etoposide: (50pM) _  _ + e +
VE-821: (10uM) -  + - + = Nuclear Fraction
E1+E2+ATP+Ub: +

+

+
£
|

Etoposide: (50uM) — - + +
VE-821: (10pM) —  + — 4+
——— — 5P
268kDa
P CeP v
117 kDa
IP: CBP

s ot S e 5 CaP

Figure 2.6 Inhibition of ATR kinase activity reduces the DNA damage-induced nuclear CBP
autoubiquitination. U20S cells were treated with ATR kinase inhibitor VE-821 for 30mins followed by
treatment with etoposide for 5hrs. Cells were harvested for CBP immunoprecipitation from nuclear
fraction using anti-CBP antibody at 4°C overnight. The overnight IPs were washed and incubated with
ubiquitin reaction components; E1, E2, Ub, ATP- Mg2+ for 90minutes followed by SDS-PAGE and western

blot analysis. Lysates from nuclear fraction were immunoblotted with the indicated antibodies.
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Figure 2.7 ATR depletion reduces the DNA damage-induced nuclear CBP autoubiquitination.
U20S cells were treated with control siRNA or ATR siRNA for 72hrs followed by etoposide treatment 5hrs
before harvest. Cells were harvested for CBP immunoprecipitation from nuclear fraction using anti-CBP
antibody at 4°C overnight. The overnight IPs were washed and incubated with ubiquitin reaction
components; E1, E2, Ub, ATP- Mg2+ for 90 minutes followed by SDS-PAGE and western blot analysis.
Lysates from nuclear fraction were immunoblotted with the indicated antibodies.
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DNA Damage Redistributes Nuclear CBP Localization

DNA damage induces several signaling events and activities that could influence
a protein's stability, cellular localization, and even interaction with other proteins.
Endogenous CBP is known to generally have a randomly diffused staining pattern,
predominantly in the nucleus, under normal cell condition. To determine the effect of
DNA damage on CBP cellular localization, U20S cells were treated with doxorubicin for
6hrs followed by fixation and staining for immunofluorescence microscopy. In response
to doxorubicin treatment, immunofluorescence microscopy of U20S cells revealed
discrete punctuate CBP staining pattern in the nucleus which resembled PML bodies,
compared with untreated cells (Fig. 2.8). PML bodies are Some of these punctuate CBP
stains co-localized with PML in response to doxorubicin-induced DNA damage (Fig.

2.9).
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Figure 2.8 Immunofluorescence microscopy of CBP nuclear distribution in the presence and
absence of DNA damage. U20S cells were treated with doxorubicin for 6hrs followed by
immunofluorescence microscopy using anti-CBP antibody (Santa Cruz) and DAPI for nuclei staining.
Images were acquired using the EVOS AMG fluorescent microscope and representative images are

shown at the same exposure and magnification (40X).
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Figure 2.9 Immunofluorescence microscopy of CBP and PML in nuclear bodies in response to
doxorubicin. U20S cells were treated with doxorubicin for 6hrs followed by immunofluorescence
microscopy using anti-CBP and PML antibodies (Santa Cruz). DAPI was used for nuclei staining. Images
were acquired using the EVOS AMG fluorescent microscope and representative images are shown at the

same exposure and magnification (40X).
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Post-Translational Modification of Cytoplasmic and Nuclear CBP in Response to
DNA Damage

Based on our observation that DNA damage induces the activation of nuclear
CBP autoubiquitination, we determined whether differential post translational
modifications occur between cytoplasmic and nuclear pools of CBP, in the absence and
presence of doxorubicin induced DNA damage. Several studies have indicated the
importance of CBP modifications such as phosphorylation, acetylation, ubiquitination,
sumoylation, methylation in the regulation of its co-activator role in the transcription of
target genes [36, 108, 112-119]. Most of these studies however, investigated CBP post
translational modification in the absence of stress conditions and also from whole cell
lysates. To identify CBP PTMs in cellular compartments, CBP was immunoprecipitated
from cytoplasmic and nuclear fractions of U20S cells and subjected to mass
spectrometry followed by PTM analysis. The following post translational modifications of
CBP were detected; acetylation, phosphorylation, methylation and glcNAcylation (Table
1). CBP was found to be differentially acetylated between cytoplasmic and nuclear
fractions in the absence of DNA damage. The acetylated sites are consistent with
reported sites in the PhosphositePlus database. These acetylated sites were retained in
both compartments in response to stress. We confirmed CBP acetylation in the
cytoplasmic and nuclear fractions in the absence and presence of doxorubicin-induced
DNA damage by reciprocal immunoprecipitations using CBP and acetylated lysine

specific antibodies (Figure 2.10).
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Also, CBP was methylated only in the nuclear fraction in the absence of DNA damage
(Table 1). There's no previous report of this particular methylation site. In addition,
glcNAcylation of CBP was detected on the same sites in both cytoplasmic and nuclear
fractions in the absence of DNA damage (Table 1). CBP glcNAcylation however, was
not detected in response to DNA damage and there is no previous report of this

modification.

CBP is Differentially Phosphorylated in Response to DNA Damage

Further, PTM analysis revealed differential CBP phosphorylation between
cytoplasmic and nuclear pools in the absence and presence of doxorubicin-induced
DNA damage (Table 1). In the absence of doxorubicin-induced DNA damage,
phosphorylation was detected only in the nuclear CBP pool, on two different sites;
S1763 and S2063. These phosphorylation sites have previously been reported in the
PhosphositePlus database. CBP phosphorylation was not detected in the cytoplasmic
fraction. In response to DNA damage, nuclear CBP phosphorylation was detected on
S124.This site has also been reported in PhosphositePlus and is consistent with a
previous work that analyzed ATM/ ATR substrates in response to UV radiation using
whole cell lysates [162]. We however, did not detect any cytoplasmic CBP

phosphorylation in response to DNA damage.
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Table 1: Post-translational Modification (PTM) of cytoplasmic and nuclear CBP

identified by mass spectrometry

Phosphorylation Acetylation Methylation GlcNAcylation
Cytoplasm | Nucleus | Cytoplasm Nucleus Cytoplasm | Nucleus | Cytoplasm | Nucleus
No DNA
damage
None |S1763-p |K1937-ac K1762-ac None K420-me | T1927-gl T1927-gl
S2063-p
Doxoru None [S124 K1937-ac K1762-ac None None None None
bicin-
induced
DNA
damage
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Figure 2.10 Acetylation of CBP in response to Doxorubicin. U20S cells were treated with Dox over a
6hr time period followed by reciprocal CBP (Santa Cruz) and acetyl lysine (cell signaling)
immunoprecipitations from cytoplasmic and nuclear fractions. The IPs were washed and subjected to
immunoblotting with CBP (Santa Cruz) and acetyl-lysine (cell signaling) antibodies. Lysates from

cytoplasmic and nuclear fractions were immunoblotted with the indicated antibodies.
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p53 Ubiquitination in Response to Doxorubicin-Induced DNA Damage
Ubiquitination is an important post-translational modification involved in the
regulation of p53 turnover under unstressed cellular condition. In response to various
stress signals, p53 is stabilized and its level increases. Post-translational modifications
of p53 such as phosphorylation, acetylation, sumoylation have been reported to play
roles in p53 stability and transactivation in response to stress [164,165]. Since CBP E3
ubiquitin ligase activity is active in the cytoplasm and in the nucleus, in response to DNA
damage (Fig. 2.1-2.3), and based on the fact that CBP is an E4 polyubiquitin ligase for
p53 in the absence of stress [118], we examined the endogenous p53 ubiquitination
status in response to doxorubicin-induced DNA damage in the cytoplasm and nucleus
to determine if there is any correlation between CBP autoubiquitination events and p53
ubiquitination. An early study showed that ubiquitination of p53 is differentially affected
by ionizing and UV radiation [168]. We exposed U20S cells to doxorubicin for 5hrs
followed by p53 immunoprecipitation from cytoplasmic and nuclear fractions and
immunoblotting with p53 and ubiquitin antibodies. Our results indicated that p53 is
ubiquitinated in the cytoplasm with and without DNA damage (Fig 2.11). In the nucleus
however, ubiquitin-conjugated p53 were detected more in cells treated with doxorubicin

compared with untreated cells (Fig 2.11).
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Figure 2.11 Doxorubicin-induced p53 ubiquitination. U20S cells were treated with 2uM Dox for 5hrs
after which p53 was immunoprecipitated from cytoplasmic and nuclear fractions using p53 antibody
(DO.1, Santa Cruz) overnight, followed by immunoblotting with p53 (FL-393, Santa Cruz) and ubiquitin

(VU-1, Life Sensors) antibodies. Lysates were immunoblotted with the indicated antibodies.
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2.4  Summary

The otherwise dormant nuclear CBP E3 autoubiquitination is activated in
response to DNA damage induced by gamma radiation and also by genotoxic agents.
Cytoplasmic CBP retains its E3 autoubiquitination property in response to DNA
damage. Activation of the ATR kinase activity but not ATM kinase activity in response to
DNA damage was found necessary to trigger the activation of nuclear CBP
autoubiquitination. Knock down of ATR abrogated the DNA damage-induced nuclear
CBP ES3 autoubiquitination activity. Furthermore, in response to Dox treatment,
immunofluorescence microscopy revealed punctuate CBP staining pattern, some of
which localized with PML in the nucleus. Post-translational modification (PTM) analysis
of CBP revealed differential compartmentalized CBP PTMs in the absence and
presence of DNA damage. We found that CBP was methylated on K420 in the nucleus
but not in the cytoplasm in the absence of DNA damage but not in response to DNA
damage. In addition, nuclear CBP was differentially phosphorylated in the absence
versus in response to doxorubicin induced DNA damage. Nuclear CBP was
phosphorylated on S1763 and S2063 under unstressed cell condition, but
phosphorylated on S124 in response to doxorubicin-induced DNA damage. We
however, did not detect any phosphorylation events in cytoplasmic CBP pool with or
without genotoxic stress. Also, we found that p53 is polyubiquitinated in response to

Dox treatment in both cytoplasmic and nuclear fractions of U20S cells.
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Chapter 3: Novel Interaction between CBP and DBC1 and Regulation of CBP

Ubiquitin Ligase Activities

3.1 Introduction

CBP like its paralogue p300, possesses both E3 and E4 ubiquitin ligase
activities. Previous work revealed that the N-terminally located conserved Zn?* -binding
Cys-His-rich region (CH1) of CBP and p300 functions as a putative E3 and E4 ubiquitin
ligase domain [118, 121]. We also understand that the intrinsic E3 ubiquitin ligase
activity of CBP and p300 drives autoubiquitination while the E4 ubiquitin ligase activity
directs p53 polyubiquitination and its subsequent degradation by the 26S proteasomal
pathway [118]. E4 enzymes catalyze ubiquitin chain assembly on preformed ubiquitin
moieties of substrates, designating them for 26S proteasomal degradation [145, 146].
The E4 ubiquitin ligase activity of CBP and p300 contribute to the mechanisms that
maintain the cellular physiologic levels of p53, a tumor suppressor protein frequently
mutated in many human cancers, whose activity is controlled by covalent
posttranscriptional modifications such as acetylation, methylation, phosphorylation,
ubiquitination, neddylation and sumoylation [164, 165]. In the absence of cellular stress,
physiologic levels of p53 are primarily maintained by its negative modulator, the Mouse
double minute protein 2 (Mdm2), a well characterized ubiquitin E3 ligase enzyme, in
conjunction with CBP/p300 which function as ubiquitin E4 conjugation factors [118, 152,

166, 167]. Early studies have indicated that Mdm2 catalyzes multiple
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monoubiquitination of p53, a signal for p53 nuclear export [166, 167]. We previously
demonstrated that the exported monoubiquitinated p53 is polyubiquitinated by
cytoplasmic CBP/p300 targeting p53 for 26S proteasomal degradation [118, 121]. The
regulation of the compartmentalized CBP and p300 ubiquitin ligase activities however,
was not examined.

Conversely, in response to diverse cellular stress conditions, mechanisms such
as MDM2 inactivation, ATM/ATR mediated phosphorylation of p53, and acetylation of
specific lysine residues in the C-terminal region of p53 by CBP/p300, have been shown
to collectively increase the DNA binding ability, stability and transcriptional activation of
p53 [22, 28-30, 131, 132]. CBP and p300 thus play double edged roles in p53
regulation; by promoting p53 polyubiquitination and degradation in the absence of
cellular stress and also by promoting p53 stability and transactivation in response to
cellular insults.

This chapter describes the experiments carried out in an attempt to understand the
regulation of compartmentalized CBP ubiquitin ligase activities in the absence of cellular
stress. First, we examined whether there are cytoplasmic activators or nuclear inhibitors
of CBP autoubiquitination activity. Using MudPIT and mass spectrometry analyses, we
identified CBP binding partners in the cytoplasmic and nuclear fraction of U20S cells.
Our proteomics data revealed that DBCL1 is a CBP interacting protein both in the cytosol
and nucleus. In addition, our results suggest that DBC1 is involved in the regulation of

CBP ubiquitin ligase activities.
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3.2 Materials and Methods

Subcellular Fractionation

Cytoplasmic and Nuclear extracts of U20S and H1299 cells were prepared using the
NE-PER Nuclear and Cytoplasmic Extraction kit (Thermo Fisher). Protein concentration
was determined using the bicinchoninic acid (BCA) protein assay kit (Thermo Fisher)

compared to bovine serum albumin (BSA) protein standards (Thermo Fisher).

In Vitro E3 Assays of CBP

CBP was immunoprecipitated from 0.8mg cytoplasm or 0.3mg nuclear fractions diluted
with NP40 lysis buffer [25mM Tris HCI (pH 7.5), 150mM NaCl, 1uM ZnCl,, 1% igepal
(NP40)], supplemented with protease inhibitors using A-22 antibody (Santa Cruz)
followed by protein A agarose. The IPs were washed in NP 40 lysis buffer three times
followed by two washes in Ub buffer (25mM HEPES, pH 7.4, 10mM NacCl, 3mM MgCl,,
0.05% Triton X-100, 0.5mM DTT, 3mM Mg-ATP). The washed and equilibrated IPs
were then incubated with 100ng E1 (rabbit; Boston Biochem), 25ng E2 (UbcH5a,
human recombinant; Boston Biochem), and 5ug Ub (human recombinant; Boston
Biochem) for 90min at 37°C. Reactions were stopped by the addition of LDS sample
buffer, followed by SDS-PAGE and immunoblotting using CBP and Ub antibodies

(Santa Cruz).
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MudPIT Analysis

U20S cells were fractionated into cytoplasmic and nuclear fractions followed by CBP
immunoprecipitation from both fractions using anti CBP conjugated agarose beads.
Eluates were separated by SDS-PAGE followed by coomassie staining. Mass
spectrometry analysis was carried out at the proteomics core of the University of
Virginia (UVA). Briefly, the gel piece was transferred to a siliconized tube and washed
and destained in 200pL 50% methanol for 3hours. The gel pieces were dehydrated in
acetonitrile, rehydrated in 30pL of 20mM dithiolthreitol in 0.1M ammonium bicarbonate
and reduced at room temperature for 0.5h. The DTT solution was removed and the
sample alkylated in 30pL 50mM iodoacetamide in 0.1M ammonium bicarbonate at room
temperature for 0.5h. The reagent was removed and the gel pieces dehydrated in
100puL acetonitrile. The acetonitrile was removed and the gel pieces rehydrated in
100pL 0.1M ammonium bicarbonate. The pieces were dehydrated in 100uL
acetonitrile, the acetonitrile removed and the pieces completely dried by vacuum
centrifugation. The gel pieces were rehydrated in 20ng/pL trypsin in 50mM ammonium
bicarbonate on ice for 10min. Any excess enzyme solution was removed and 20uL
50mM ammonium bicarbonate added. The sample was digested overnight at 37°C and
the peptides formed extracted from the polyacrylamide in two 30uL aliquots of 50%
acetonitrile/ 5% formic acid. These extracts were combined and evaporated to 15uL for
MS analysis. The LC-MS system consisted of a Thermo Electron Orbitrap Velos ETD
mass spectrometer system with a Protana nanospray ion source interfaced to a self-
packed 8cm x 75um id Phenomenex Jupiter 10um C18 reversed-phase capillary

column. 7uL aliquots of the extract were injected and the peptides eluted from the
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column by an acetonitrile/0.1M acetic acid gradient at a flow rate of 0.5uL/min over
1.2hours. The nanospray ion source was operated at 2.5kV. The digest was analyzed
using the rapid switching capability of the instrument acquiring full scan mass spectra to
determine peptide molecular weights followed by product ion spectra [20] to determine
amino acid sequence in sequential scans. The data were analyzed by database

searching using the Sequest search algorithm against IPI Human.

SDS Gel Band Trypsin Digestion and Peptide Mass Spectrometry Analysis

Gel bands were excised from the SDS PAGE gel, cut into 1mm cubes and washed
with100mM ammonium bicarbonate (AB) pH 7.4 (Sigma). The gel cubes were then
dehydrated in the speed vac 20minutes and rehydrated in 20pul of 12.5ng/pl trypsin
(Promega, Madison WI) in 100mM AB with 1% proteaseMAX surfactant, (Promega,
Madison WI) for 2hours at 37°C. The supernatant transferred to a new tube and
combined with the supernatant of a 10minute extraction of the gel pieces with 100%
acetonitrile. The peptide solution was then speedvaced to dryness and resuspended in
100mM AB. Peptides were loaded on a self-packed fused silica (polymicro
technologies) trap column (360micron o0.d. X 100micron i.d.) with a Kasil frit packed with
5-15micron irregular phenyl C-18 YMC packing. The trap column was connected to an
analytical column (360micron X 50micron) with a fritted tip at 5 micron or less (New
Objective) packed with 5um phenyl C-18 YMC packing. Peptides were trapped and then
eluted into a Thermo Finnigan LCQ deca XP max mass spectrometer with an
acetonitrile gradient from 0% to 80% over one hour at a flow rate of between 50-150nl/

minute. The mass spectrometer was operated in data dependent mode. First a MS scan
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from mass 300-1600m/z or 400-1800m/z was collected to determine the mass of
peptides eluting at that time, then the top five most abundant masses were fragmented
into MS/MS scans and placed on an exclusion list for 1minute. This sequence MS
followed by 5 MS/MS scans with exclusion was repeated throughout the hour gradient.
The approximately 5000 MS? scans were then searched with SEQUEST using a human
non-redundant data base down loaded from NCBI. The following variable modifications
was considered for PTM’s oxidized (methionine), phosphorylated (serine, threonine and
tyrosine), GLC nac modified (threonine) and acetylated (lysine) XCoor cut off of (1.25,
1.75, 2.25) for (+1, +2, +3) peptide charge states was applied. MS? scans passing this

cut off were manually verified.

Western Blotting, Immunoprecipitation and Immunofluorescence

For western blot analyses, cytoplasmic and nuclear extracts of cells were prepared
using NE-PER fractionation kit followed by SDS-PAGE and immunoblotting with the
indicated antibodies.

For immunoprecipitations, cytoplasmic and nuclear extracts were diluted with NP40
lysis buffer [25mM Tris HCI (pH 7.5), 150mM NacCl, 1uM ZnCl,, 1% igepal (NP40)],
supplemented with protease inhibitors. Immunoprecipitations from cell lysates were
performed at 4°C overnight in the lysis buffer incubated with the indicated antibodies
and either Protein A agarose (for antibodies raised in rabbit) or Protein G agarose (for
antibodies raised in mouse). The overnight immunoprecipitates were washed five times
in lysis buffer and eluted using the LDS loading buffer and DTT. Eluates were subjected

to SDS PAGE electrophoresis and western blot signals were quantified after
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visualization of primary antibody by fluorescent-labeled secondary antibody and
detection by Odyssey blot scanner (LiCor), using ImageJ National Institutes of Health
(NIH) software.

For Immunofluorescence, cells were seeded in 4 chambered slides for 24hrs followed
by treatment with 2uM doxorubicin for 3hrs. Cells were fixed in 4% paraformaldehyde
(Thermo Scientific) in PBS for 15 minutes at room temperature. Following three washes
with PBS, cells were permeabilized with 0.2% TritonX-100 in PBS for 10 minutes at
room temperature. Cells were washed three times with PBS followed by 1hour blocking
in Odyssey blocking buffer (Li-Cor, 927-4000) diluted 1:1 with PBS at room
temperature. Slides were then incubated overnight at 4°C in primary antibody diluted in
blocking buffer containing 0.2% TritonX-100. Following three 5 minute washes with
PBS, slides were incubated for 1 hour at room temperature in the dark in secondary
antibody diluted in blocking buffer containing 0.2% TritonX-100. Slides were washed
three times with PBS followed by mounting with prolong diamond antifade mountant
containing DAPI (Life Technologies/Molecular Probes). Images were acquired using the
EVOS AMG fluorescent microscope and representative images are shown at the same

exposure and magnification.

Generation of Knockdown Cell Lines

DBC1 and CBP single or double knockdown stable cell lines were made in the U20S
parent line using Mission shRNA lentiviral vector from Sigma-Aldrich and GIPZ lentiviral
shRNA vector from GE Healthcare Dharmacon, respectively. DBC1 Mission shRNA

clone IDs were:
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NM_021174.4-1597slcl.

Sequence: 5-CCGGGCATTGATTTGAGCGGCTGTACTCGAGTACAGCCGCTCAAATCAATGCTTTTTG
and NM_021174.4-1125s1c1l.:

Sequence: 5-CCGGCCCATCTGTGACTTCCTAGAACTCGAGTTCTAGGAAGTCACAGATGGGTTTTTG.
GIPZ CREBBP shRNAs tested for knockdown level were: V2LHS 24251,

V3LHS_ 358933, V3LHS_358934, and V3LHS_358935.

Lentiviruses were produced in HEK-293T cells by calcium phosphate mediated
transfection using pLKO.1-shRNA or pGIPZ-shRNA plasmid along with pCMV-dR8.9
packaging and pCMV-VSVG envelope plasmids.

HEK-293T cells were cultured in DMEM supplemented with 10% fetal bovine serum and
100 IU/ml penicillin, 100ug of streptomycin, and maintained in a humidified 5% CO,
incubator at 37°C. HEK-293T cells (5 x 10°) were plated in 6-cm plates 24hours before
transfection at confluency of 50%. Two hours prior to transfection, medium was
removed from cells and replaced with no antibiotic growth medium. CaCl,-DNAs
solution was prepared, added to 2X HBS (HEPES-Buffered Saline), pH 7.1, solution,
and incubated for 25minutes at room temperature followed by addition of 0.5ml of
calcium phosphate-DNA precipitate to each plate. The culture medium was changed
16hours after transfection. On days 3 and 4, lentivirus supernatant was collected.
Virus medium containing 8ug/ml polybrene was used to infect and transduce U20S
cells. Cells were plated in 6-cm plates 24hours before infection at confluency of 60%
and infected with 1.0ml of pLKO.1 or pGIPZ lentivirus supernatant. Virus medium was
removed the next day and replaced with DMEM. DMEM containing 5ug/ml puromycin

was used to select the DBC1sh and CBPsh cells 48hours post-infection. The cells were
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collected at 72hours post selection, and lysed for Western blotting. DBC1sh cells were
subsequently used to make the DBC1/CBP double knockdown line. Cells were infected

with the pGIPZ lentivirus, as previously described, and sorted for TurboGFP.

siRNA Transfection

CBP siRNA and DBC1 SMARTpool ON-TARGET plus siRNA were purchased from
Ambion Life Technologies and Dharmacon respectively. U20S cells were transfected
with siRNA (30nM final concentration) using Lipofectamine 2000 (Invitrogen). 72 hours
after transfection, cells were harvested and analyzed for the expression level of CBP

and DBC1 by western blotting.

Plasmids and Expression of Recombinant proteins

DBC1 was divided into three different regions, DBC1 1-270aa, DBC1 1-470aa and
DBC1 697-923aa based on its globular domain structure. The plasmids for
overexpressing these truncated DBC1 proteins in mammalian cells were constructed by
amplifying DBC1 from the parent plasmid, myc-tagged full length DBC1, which was
purchased from Addgene. The following primers were used:

Forward primer for DBC11-270 and DBC1 1-470: 5-GGATCGAATTCTCCCAGTTTAAGCGCCAG

Reverse primer for DBC1 1-270: 5-GCCATCTCGAGCTAGCTCAGGGGGAAGGCTGATAG

Reverse primer for DBC1 1-470: 5-GCCATCTCGAGCTAGGCATCAGGTGCCTGTTCAG

Forward primer for DBC1 697-923: 5-GGATCGAATTCTCTGCTGTGCTCCCCTTAGAC

Reverse primer for DBC1697-923: 5-CCATCTCGAGTCAGTTGCTAGGTGCCGGC

The vector backbone of the parent plasmid has intact EcoRI and Xhol sites with kozak
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sequence, start codon and myc tag upstream of the EcoRI site. The parent plasmid and
the amplified sequences were double digested with above mentioned restriction
endonucleases and ligated with T4 DNA ligase using NEB manufacturer’s protocols.
DH10B was transformed with the ligated products and transformants were selected
overnight on Lysogeny Broth Agar (LBA) plates supplemented with Ampicillin (100
pg/ml). Single colonies were restreaked on Ampicillin supplemented plates to obtain
pure clones. Single colonies from the restreaks were grown overnight in LB medium
containing Ampicillin (100ug/ml). Plasmid DNA was extracted from the cultures using
Qiagen Miniprep kit and verified by Sanger Sequencing (MWG Operon).

Full length FLAG-CBP and truncated mutants of CBP were previously made in the Lab.

Generation of shRNA resistant plasmids

shRNA resistant plasmids were constructed by generating silent mutations in the region
targeted by Sigma siRNA of the DBC-1 ORF. The silent mutations were generated by
Gene Splicing by Overlap Extension (Gene SOEing) method, as described in Chapter
25 of Methods in Molecular Biology, Vol 15, PCR Protocols Current Methods and
Applications. Briefly, the parent plasmid was amplified with flanking primers containing
appropriate restriction sites and complementary overlapping SOeing primers carrying
silent mutations to generate DNA fragments with overlapping complementary ends. The
final DNA fragment was then generated by amplifying these products with outside
flanking primers. The final DNA fragment was digested with EcoRI and Xhol

endonucleases and ligated to the linearized myc tagged vector.
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Flanking forward primer: 5-GGATCGAATTCTCCCAGTTTAAGCGCCAG
Reverse SOEing primer: 5-CCATTTAGTGCACCCGGAGAGGTCGATGCCAGTCTGGGCCTGCGC
Forward SOEing primer: 5-ATCGACCTCTCCGGGTGCACTAAATGGTGGCGCTTTGCCGAGTTTCAGTAC

Reverse flanking primer: 5-CCATCTCGAGTCAGTTGCTAGGTGCCGGC
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3.3 Results

A Nuclear Factor Inhibits CBP Autoubiquitination Activity

To define the regulation of the compartmentalized CBP ubiquitin ligase activities
in the absence of cellular stress, we first examined whether there are CBP-interacting
activators or inhibitors of CBP ubiquitin ligase activities in the cytoplasmic and nuclear
compartments, respectively. CBP was first immunoprecipitated from cytoplasmic and
nuclear fractions of U20S cells. Different concentrations of cytoplasmic lysates and of
CBP immuno-depleted cytoplasmic lysates were then incubated with nuclear CBP IPs
followed by in-vitro CBP E3 autoubiquitination assay performed on the washed nuclear
CBP IPs. Similarly, different concentrations of nuclear lysates and of CBP immuno-
depleted nuclear lysates were incubated with cytoplasmic CBP IPs followed by in-vitro
CBP ES3 autoubiquitination assay on the washed cytoplasmic CBP IPs. Our results in
Fig. 3.1 indicate that a nuclear factor, depleted with CBP immuno-depletion, inhibits
CBP ES3 autoubiquitination activity, while a cytoplasmic factor not depleted by a CBP IP

promotes CBP autoubiquitination activity.
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Figure 3.1 Identification of activators and/or inhibitors of CBP E3 autoubiquitination. (Left panel):
CBP immunoprecipitation from cytoplasmic and nuclear fractions followed by incubation of cytoplasmic
fraction with increasing concentrations of nuclear lysates before IP (0.1mg, 0.2mg, 0.4mg) or with
increasing concentration of nuclear lysates after IP (0.1mg, 0.2mg. 0.4mg) for 2hrs followed by in vitro E3
assay and immunoblotting with ubiquitin (Ub) antibody (Santa Cruz). For negative (-) control, cytoplasmic
IP was incubated with nuclear extraction buffer. (Right panel): CBP immunoprecipitation from cytoplasmic
and nuclear fractions followed by incubation of nuclear fraction with increasing concentration of
cytoplasmic lysates before IP (0.1mg, 0.2mg, 0.4mg) or with increasing concentration of cytoplasmic
lysates after IP (0.1mg, 0.2mg, 0.4mg) for 2hrs followed by in vitro E3 assay and immunoblotting with

ubiquitin (Ub) antibody. For negative control, nuclear IP was incubated with cytoplasmic extraction buffer.
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Identification of Nuclear and Cytoplasmic CBP-Interacting Proteins

Using MudPIT analysis, we identified CBP interacting proteins from nuclear, as
well as cytoplasmic, fractions of U20S cells. Silver staining of CBP
immunoprecipitations revealed both common and differential protein bands between
nuclear and cytoplasmic fractions of U20S cells (Fig. 3.2), indicating that there are
differential CBP binding proteins between both cellular compartments. Nuclear CBP
was 3-fold more abundant than cytoplasmic CBP (Fig. 3.3), consistent with previous
findings by immunoblot and immunofluorescence [1, 118]. We subtracted from our list of
CBP-interacting partners, proteins with only one spectrum count and proteins identified
in the IgG control IPs from both cytoplasmic and nuclear fractions. We identified 70
overlapping cytoplasmic CBP-binding proteins and 48 overlapping nuclear CBP-binding
proteins from two independent experiments (Fig. 3.4, 3.5) (Tables 2 & 3). Of interest
was a 130kDa protein with a total spectra count second to CBP's in the nuclear fraction,
but also present in the cytoplasm fraction, identified as Cell Cycle and Apoptosis

Regulator protein 2 (CCAR2), otherwise known as Deleted in Breast Cancer 1 (DBC1).

79

www.manaraa.com



/, CBP
268kDa
IP: CBP
117kDa
Silver Stain
71kDa

— e

Figure 3.2 Silver staining of CBP immunoprecipitations from cytoplasmic and nuclear fractions of
U20S cells. CBP was immunoprecipitated from cytoplasmic and nuclear fractions of U20S cells followed
by SDS-PAGE electrophoresis and silver staining using the SilverQuest Silver Staining lit from Thermo
Fisher Scientific.
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Figure 3.3 Identification of CBP by MudPIT analysis from cytoplasmic and nuclear CBP IPs of

U20S cells. Graph represents the average number of total spectra counts of CBP from two independent

experiments.
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Figure 3.4 Venn diagram representation of cytoplasmic CBP interacting proteins from two

independent experiments.
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Figure 3.5 Venn diagram representation of nuclear CBP interacting proteins from two independent

experiments.
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Cytoplasmic 1 Cytoplasmic 2 Nuclear 1 Nuclear 2

N=2

Figure 3.6 Venn diagram representation of CBP-interacting proteins. Proteins were identified by
MudPIT analysis from CBP immunoprecipitations from cytoplasmic and nuclear fractions of U20S cells,
from two independent experiments (N=2). A. Cytoplasmic CBP- interacting proteins. B. Nuclear CBP-

interacting proteins. C. Overlap between cytoplasmic CBP and nuclear CBP-interacting proteins.
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CBP-DBC1 Interaction in Cells

DBC1 was initially mapped to a region homozygously deleted in certain human
breast cancers [171, 172], and has previously been shown to modulate the activities of
nuclear receptors such as, AR, Rev-erba, ERa, and of epigenetic modifiers such as
SIRT1, HDAC3 and SUV39H1 [173-178]. MudPIT data revealed threefold more nuclear
DBC1 than cytoplasmic DBC1 from the CBP IPs (Fig. 3.7). To confirm that DBC1
interacts with CBP, we transfected U20S cells with FLAG-CBP and myc-DBCland
performed anti-FLAG IP followed by myc or FLAG immunoblotting. As shown in Fig. 3.8
A, myc-DBC1 was observed in the FLAG IP when the two proteins were cotransfected.
We further validated the interaction between CBP and DBC1 by endogenous CBP and
DBC1 immunoprecipitations from U20S cells where robust co-immunoprecipitation with
each antibody was observed in both nuclear and cytoplasmic lysates, but no signal was
seen in control 1gG IPs (Fig. 3.8 B). Similar evidence of interaction between
endogenous CBP and DBC1 was observed in H1299 cells (Fig. 3.8 C). By
immunofluorescence microscopy, both CBP and DBC1 exhibited very similar staining

pattern in the nucleus, as that is where the bulk of each protein is localized (Fig. 3.9).
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Figure 3.7 Identification of DBC1 by MudPIT analysis from cytoplasmic and nuclear CBP IPs of
U20S cells. CBP was immunoprecipitated from cytoplasmic and nuclear fractions of U20S cells followed
by MudPIT and mass spectrometry analyses. Graph represents the average number of total spectra

count from two separate experiments.
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Figure 3.8 DBC1 stably interacts with CBP in cells. A. U20S cells were transfected with flag tagged

full length CBP and myc tagged full length DBC1 for 48hrs followed by flag immunoprecipitation and

immunoblotting using flag (sigma) and myc (millipore) antibodies. B. and C. Endogenous interaction

between CBP and DBC1. CBP or DBC1 immunoprecipitations from cytoplasmic and nuclear fractions of
U20S cells (B) and H1299 cells (C) followed by immunoblotting using CBP and DBC1 antibodies.
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Figure 3.9 Immunofluorescence microscopy of CBP and DBC1 in U20S and H1299 cells. Images
were acquired using the EVOS AMG fluorescent microscope and representative images are shown at the
same exposure and magnification (40X).

95

www.manaraa.com



Mapping the Regions of DBC1 and CBP Required for the CBP-DBC1 Interaction

To identify the regions of DBCL1 that are necessary for the CBP-DBC1
interaction, we transfected U20S cells with full length FLAG-CBP and truncation
mutants of myc-DBC1 and performed FLAG IP's followed by FLAG and myc blots.
DBCL1 protein structure consists of an N-terminal NLS (nuclear localization sequence),
LZ (leucine zipper) domain, a centrally located NUDIX domain and a C-terminus coiled-
coiled domain. We found that deletion of the N-terminal region of DBC1(construct 697-
923aa) abolished the binding between DBC1 and CBP (Fig. 3.10), while the first 240
amino acids of DBC1 were sufficient for CBP-DBCL1 interaction (Fig. 3.11).

To identify the regions of CBP that interact with DBC1, we transfected U20S
cells with full-length myc-DBC1 and the N- and C- terminal deletion constructs of FLAG-
CBP followed by FLAG IP's and FLAG and myc blots. CBP consists of three
cysteine/histidine domains; CH1, CH2, and CH3 located at the N-terminus
transactivation region, the centrally located acetyl-transferase region and the C-
terminus transactivation region respectively (Fig. 1.1). The tested constructs deleted all
3 domains (1-351), included CH1 only (1-676), or included CH2/CH3 (A1-665). Our
results indicate that DBC1 bound to all the tested CBP constructs, indicating DBC1
interactions with both the extreme N-(1-351) and C-terminal regions (666-2442) of CBP
(Fig. 3.12). Notably, p53 also binds to both N- and C- terminal regions of CBP. Binding
of p53 to N-terminus of CBP (CH1 domain) promotes p53 polyubiquitination and its
subsequent degradation [118] while binding to the C-terminus (CH3 domain) promotes

acetylation and transcriptional activation of p53 [157].
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Figure 3.10 Schematic diagram of full-length (FL) DBC1, full-length CBP and deletion mutants of
DBC1 and CBP. NLS, nuclear localization sequence; NES, nuclear export sequence; CH1, CH2, CH3,
cysteine-histidine regions, LZ; leucine zipper, NUDIX; Nucleoside Diphosphate linked to X, EF; E and F

alpha helices of parvalbumin.
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Figure 3.11 N-terminus of DBCLlis required for the CBP-DBCL1 interaction. U20S cells were
transfected with full length FLAG-CBP and truncated mutants of myc-DBC1 followed by FLAG IP and

immunoblotting with FLAG and myc antibodies.
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Regulation of CBP E3 Autoubiquitination Activity by DBC1

Since DBC1 interacts with CBP in both the nucleus and cytoplasm (Fig. 3.9) and
based on our observation that DBC1 binds both N- and C-terminal regions of CBP (Fig.
3.12), we investigated whether DBC1 plays a role in the modulation of
compartmentalized CBP ubiquitin activities, which uses CBP N-terminus sequences.
U20S cells were treated with either control SiRNA or DBC1 siRNA for 72hrs followed by
CBP immunoprecipitation from cytoplasmic and nuclear lysates and in-vitro analysis of
CBP E3 autoubiquitination activity. As shown in Fig. 3.13, downregulation of DBC1 led
to a significant increase in nuclear CBP E3 autoubiquitination when compared to
nuclear fraction of control siRNA. DBC1 depletion modestly increased CBP E3
autoubiquitination in the cytoplasmic compartment when compared to the cytoplasmic
control siRNA treated cells. This result confirms our observation that a CBP-dependent

nuclear factor inhibits CBP ubiquitin activities (Fig. 3.1).
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Figure 3.13 DBC1 inhibits nuclear CBP E3 autoubiquitination activity. U20S cells were transfected
with control siRNA or DBC1 siRNA for 72hrs followed by CBP immunoprecipitation from cytoplasmic and
nuclear fractions, in-vitro CBP E3 autoubiquitination assay and immunoblotting with CBP and ubiquitin
(Ub) antibodies. Graph on the right shows quantification of CBP autoubiquitination by densitometry.
Graph represents mean + SEM for three independent experiments. *p<0.05. Bottom panel shows
immunoblotting of lysates with the indicated antibodies.
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Regulation of p53-Directed CBP E4 Ligase Activity by DBC1

Previous work has indicated that the N-terminus sequences of CBP are crucial
for its E3 autoubiquitination and p53-directed E4 polyubiquitin ligase activities [118].
Since we found that DBC1 inhibits CBP E3 autoubiquitination, we examined whether
DBCL1 regulates CBP E4 ligase activity as well. CBP depletion is known to increase p53
half life as previously shown by Shi et al., 2009 [118]. To determine the effect of
individual DBC1 loss and CBP/DBCL1 loss on p53 stability, U20S cells transiently
expressing either control SiRNA, CBP siRNA, DBC1 siRNA or CBP/DBC1 double
siRNAs were treated with cycloheximide over a 90 minute time period, followed by p53
immunoblotting. DBC1 depletion led to a decrease in p53 half life compared to control
cells while depletion of both CBP and DBC1 rescued the decrease in p53 half life
observed in DBC1 depleted cells (Fig. 3.14).

Next, we examined endogenous p53 polyubiquitination status in cells treated with
either control SIRNA, CBP siRNA, DBC1 siRNA or CBP/DBC1 double siRNAs for 72
hours, followed by p53 immunoprecipitations and immunoblotting with p53 and ubiquitin
antibodies. DBC1 depletion caused a moderate increase in p53 polyubiquitination in the
cytoplasmic compartment but a more robust increase in p53 polyubiquitination in the
nuclear compartment when compared to control sSiRNA treated cells (Fig. 3.15). As
expected, CBP depletion led to a decrease in cytoplasmic p53 polyubiquitination when
compared with control siRNA treated cells. CBP/DBC1 double knockdown rescued the
increase in p53 polyubiquitination observed in DBC1 depleted cells in both cytoplasmic

and nuclear compartments (Fig. 3.15).
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To verify whether DBC1 inhibits CBP E4 polyubiquitin activity towards p53, U20S cells
stably expressing DBC1 shRNA were transfected with either empty vector or DBC1
deletion construct, 1-470aa, which we have shown binds CBP (Fig. 3.11). 48hrs post
transfection, cells were either treated with cycloheximide over a 90 minute time period
to determine p53 stability, or were harvested for p53 immunoprecipitations from
cytoplasmic and nuclear compartments to determine p53 polyubiquitination status. We
found that re-expression of DBC1 in both cytoplasmic and nuclear compartments led to
an increase in p53 half life as compared to DBC1 depleted cells, DBC1 depleted cells
transfected with empty vector, as well as cells expressing control shRNA (Fig. 3.16 and
3.17). We also found that DBC1 re-expression rescued the increase in p53

polyubiquitination observed in DBC1 depletion cells (Fig. 3.18).
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Figure 3.14 DBC1 depletion decreases p53 half life. A. U20S cells treated with 100uM cycloheximide
(Sigma) for up to 90min were harvested for western analysis using p53 antibody. B. Quantification of p53
half life. Graph represents mean + S.D from three independent experiments. C. Immunoblotting of lysates

with the indicated antibodies.
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Figure 3.15 DBC1 depletion increases p53 polyubiquitination. A. U20S cells were treated with either
control siRNA, CBP siRNA, DBC1 siRNA or double CBP/DBCL1 siRNA for 72 hrs followed by p53
immunoprecipitation from cytoplasmic and nuclear fractions and immunoblotting with p53 and ubiquitin

antibodies. B. Immunoblotting of lysates with the indicated antibodies.
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Figure 3.16. U20S cells expressing DBC1 shRNA. Immunoblot represents cells stably expressing
DBC1 shRNA.
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Figure 3.17 Re-expression of DBC1 stabilizes p53 in the Cytoplasmic compartment of DBC1
depleted cells. A. U20S cells expressing DBC1 shRNA were treated with 100uM cycloheximide (Sigma)
for up to 90min and harvested for subcellular fractionation into cytoplasmic and nuclear fractions followed
by immunobilotting with p53 antibody. B. Quantification of p53 half life in the cytoplasmic fraction. Graph
represents mean * S.D from three independent experiments. C. and D. Immunoblotting of lysates with

the indicated antibodies.
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Figure 3.18 Re-expression of DBC1 stabilizes p53 in the Nuclear compartment of DBC1 depleted

cells. A. U20S cells expressing DBC1 shRNA were treated with 100uM cycloheximide (Sigma) for up to

90min and harvested for subcellular fractionation into cytoplasmic and nuclear fractions followed by

immunoblotting with p53 antibody. B. Quantification of p53 half life in the nuclear Fraction. Graph

represents mean + S.D from three independent experiments. C. and D. Immunoblotting of lysates with

the indicated antibodies.
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Figure 3.18 Re-expression of DBC1 reduces p53 polyubiquitination in DBC1 depleted cells. A.
U20s cells stably expressing DBC1 shRNA were transfected with either vector only or DBC1 1-470aa
construct. 48 hrs after transfection, cells were harvested for p53 immunoprecipitations from cytoplasmic
and nuclear fractions followed by immunoblotting with p53 and Ub antibodies. Cells expressing control
shRNA were included in this experiment. B. immunoblotting of lysates with the indicated antibodies.

C. Immunoblot represents overexpression of DBC1 1-470aa in DBC1 depleted cells.
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Regulation of CBP-DBCL1 Interaction by Doxorubicin-Induced DNA Damage
Stressed cells undergo a plethora of activities that could influence signaling
events, protein localization, post-translational modifications and even protein-protein
interactions. We determined whether DNA damage had any effect on the CBP-DBC1
interaction. U20S cells were treated with doxorubicin (Dox) over a 6hr time point period,
followed by CBP immunoprecipitation and immunoblotting with CBP and DBC1
antibodies. We found that endogenous DBC1 protein level went down in the nucleus in
response to Dox-induced DNA damage (Fig. 3.19). We however did not observe any
obvious change in cytoplasmic DBC1 protein level in response to Dox. CBP-DBC1
interaction also dissociated in the nucleus over time, in response to Dox-induced DNA
damage (Fig. 3.19). By 6hrs Dox treatment, we barely detected any CBP-DBC1
interaction in the nucleus. In the cytoplasm however, we did not observe any obvious

change in CBP-DBCL interaction (Fig. 3.19).
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Figure 3.19 Interaction of CBP and DBC1 in response to doxorubicin-induced DNA damage. U20S
cells were treated with 2uM Dox for 1hr, 3hr and 6hr. At the end of the 6hr time point, CBP was
immunoprecipitated from cytoplasmic and nuclear lysates using anti CBP A-22 antibody (Santa Cruz)
followed by immunoblotting with CBP and DBC1 antibodies (Santa Cruz). Lysates were immunoblotted

with the indicated antibodies.
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Regulation of p53 Transactivated Targets and Apoptosis by CBP and DBC1

In response to cellular stresses such as DNA damage, CBP functions as a co-
activator for p53, thereby promoting p53 transcriptional activities [22, 28]. DBC1 also
augments p53 stability by promoting p53 acetylation through inhibition of SIRT1
deacetylase function [175]. To determine if CBP and DBCL1 differentially regulate p53
transcriptional activity, we examined the expression of p53-transactivated targets, p21
and PUMA in U20S cells stably expressing control shRNA, CBP shRNA, DBC1 shRNA
and CBP/DBC1 shRNA. In addition, we examined the expression of p53-transactivated
apoptotic markers, cleaved caspase 3 and PARP in the stable cells. U20S cells
expressing either control ShRNA, CBP shRNA, DBC1 shRNA or CBP-DBC1 shRNA
were exposed to doxorubicin (Dox) for 12 hrs for p53-dependent targets, p21 and
PUMA protein expression. Augmented p21 and PUMA induction was observed in CBP
depleted cells, DBC1 depleted cells and the double CBP/DBC1 depleted cells,
compared with cells expressing control sShRNA (Fig. 3.20). Overall, p21 and PUMA
induction were almost comparable in CBP depleted cells, DBC1 depleted cells, and
CBP/DBC1 depleted cells. As expected, individual loss of CBP but not DBC1 resulted in
decrease in p53 acetylation on Lys 382 (Fig. 3.20). Furthermore, in response to
doxorubicin, CBP deficient cells exhibited elevated cleaved caspase 3 and cleaved
PARP protein levels compared with control-sh cells (Fig.3.21). Individual loss of DBC1
caused a slight increase in cleaved caspase 3 compared to control-sh cells. PARP

cleavage induction in DBC1 depleted cells was comparable with induction in the control
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sh cells. Expression of cleaved caspase 3 and PARP proteins in double CBP/DBC1

depleted cells was comparable with expression in individual loss of CBP.
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Figure 3.20 Analysis of p53-dependent targets following Dox treatment in CBP and DBC1 stably
deficient cells. U20S cells stably expressing control shRNA, CBP shRNA, DBC1 shRNA or CBP/DBC1

shRNA were Dox treated for followed by cell lysis and immunoblotting with the indicated antibodies.
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Figure 3.21 Analysis of p53-induced apoptosis in CBP and DBC1 stably deficient cells. U20S cells
stably expressing control ShRNA, CBP shRNA, DBC1 shRNA or CBP/DBC1 shRNA were Dox treated

followed by cell lysis and immunoblotting with the indicated antibodies.
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having wild type p53

Percentage of tumors with DBC1 alterations

Figure 3.22 TCGA database of tumors with DBC1 alterations retaining wild-type p53 status. Graph
shows the percentage of DBC1 deletions or mutations across cancer types that retain wild-type p53
status.
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3.4 Summary

CBP was initially identified as possessing cytoplasmic localized but not nuclear
intrinsic E3 autoubiquitination and p53-directed E4 ubiquitin ligase activities under
physiologic cell conditions. The regulation of the compartmentalized CBP ubiquitin
activities was however, not studied. Preliminary studies showed that a CBP-dependent
nuclear factor inhibits CBP E3 autoubiquitination while a CBP-independent cytoplasmic
factor promotes CBP E3 autoubiquitination. Using MudPIT analysis, we identified DBC1
as a novel CBP-interacting protein in the cytoplasmic and nuclear compartments.
Immunofluorescence microscopy revealed that both CBP and DBC1 predominantly
localize to the nuclear compartment. The N-terminus of DBC1 associates with both N-
and C-terminal regions of CBP. Functional studies indicated that DBC1 inhibits CBP E3
autoubiquitination activity. In addition, we identified that DBC1 depletion caused a
decrease in p53 half life and also caused an increase in p53 polyubiquitination.
Overexpression of DBC1 in DBC1 depleted cells rescued both the decrease in p53 half
life and the increase in p53 polyubiquitination. Furthermore, we found that DNA damage
abrogated the CBP-DBC1 interaction in the nuclear compartment, possibly a factor in
DNA damage induction of CBP E3 activity CBP and DBC1 deficient cells caused
augmented p21 and PUMA expression compared with control-sh cells. CBP depletion
caused an increased cleaved caspase 3 /PARP induction compared with DBC1

depleted cells and control cells.
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Chapter 4: Discussion and Future Perspective

Apart from its co-activator role in the transcription of target genes, CBP is
involved in many other cellular pathological and physiological processes, such as cell
growth and differentiation, cell transformation and development, response to stress, cell
cycle regulation and apoptosis [36-44]. Given these pleiotropic cellular roles of CBP, it is
oftentimes implicated in several human diseases and cancers and as such, a complete
comprehension of the mechanisms that regulate its multifaceted functions is imperative,
especially in the development of new strategies for therapeutic interventions.

Since the identification of CBP/ p300 as possessing intrinsic cytoplasmic E3
ubiquitin ligase activity and also as physiological cytoplasmic but not nuclear E4 ligases
for p53, the mechanism of the compartmentalized CBP/p300 ubiquitin ligase activities
has not been investigated. Also, the effect of DNA damage on the ubiquitin ligase
activities of CBP and p300 was not examined. Both CBP and p300 mostly reside in the
nucleus with some amount in the cytoplasm. CBP however, is readily detected in the
cytoplasm compared to p300. Based on previous knowledge, the model for p53
degradation indicates that p53 is first monoubiquitinated by its well studied E3 ligase,
MDMZ2, leading to its export from nucleus to cytoplasm. In the cytoplasm, CBP/p300
function as E4 ubiquitin ligases, catalyzing the conjugation of polyubiquitin chains unto
the already monoubiquitinated p53 species. Polyubiquitinated p53 is then subsequently

targeted for proteasomal degradation by the 26S proteasome in the cytoplasm.
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CBP/p300 are therefore clearly necessary for the maintenance of physiologic p53 levels
in the absence of cellular stress.

The studies within this dissertation have provided insight into the regulation of the
compartmentalized CBP ubiquitin ligase activities both in the absence and in response
to DNA damage. The main findings are recapitulated here. As described in chapter two,
gamma irradiation and genotoxic-induced DNA damage augmented the otherwise
dormant nuclear CBP E3 autoubiquitination activity. Also, activation of ATR kinase was
necessary for the DNA damage-induced nuclear CBP E3 autoubiquitination. In addition,
CBP exhibited differential post translational modification in the cytoplasm versus
nucleus in response to DNA damage. In chapter three, DBC1 was identified as a novel
CBP interacting partner in both cytoplasmic and nuclear compartments. In the absence
of DNA damage, knockdown of DBC1 resulted in the activation of nuclear CBP E3 and
p53-directed E4 ubiquitin ligase activities. DBC1 depletion also led to increased p53

polyubiquitination.

Implications From Chapter 2 and Future Perspectives: Activation of Nuclear CBP
E3 Autoubiquitination and Differential CBP Post-translational Modifications in
Response to DNA Damage

In this chapter, the effect of DNA damage on CBP E3 autoubiquitination was
investigated. In the absence of cellular stress, cytoplasmic CBP E3 ubiquitin ligase
activity is active while nuclear CBP E3 ubiquitin ligase activity is dormant. We found that
gamma irradiation, doxorubicin, and etoposide treatments all induced the activation of

the dormant nuclear CBP E3 autoubiquitination activity in U20S and H1299 cells (Fig.
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2.2, 2.3, 2.4). These DNA damaging agents have different mechanisms of action to
induce damage. Regardless of the mechanism, our data revealed that DNA damage
causes activation of nuclear CBP E3 autoubiquitination in vitro. Even though at this
point we do not understand the in vivo relevance of the ubiquitination modification of
CBP in response to DNA damage, it is possible that certain CBP activities, in response
to DNA damage and other stress signals are augmented as a result of this modification.
Different biological outcomes can occur from the different types of ubiquitin chain
topologies. For example, ubiquitination of proteins via Lys48 generally leads to
proteasomal degradation while Lys63 linkage has been linked to signal transduction,
subcellular localization and DNA repair [135, 137,147]. Lys63-linked ubiquitination has
also been shown to be important in the stability and scaffolding functions of some
proteins [169]. Since the DNA damage-induced ubiquitination of CBP does not lead to
CBP degradation, other ubiquitin linkages other than Lys48 may be present which may
contribute to CBP's re-localization in response to damage, its stability or other damage -
induced functions. One mechanism by which CBP modulates transcription of target
genes is by a forming scaffold for DNA-binding and general transcription factors [25,
26], (Fig. 1.2). Since ubiquitination via Lys63-linkages has been shown to mediate the
scaffolding function of some proteins [169], it will be necessary to determine if the
ubiquitin conjugates on CBP in response to DNA damage are linked through Lys63 and
to also determine if CBP forms a scaffold for certain signaling events that occur in
response to damage.

Chromatin remodeling and modifications culminate in access to DNA damage sites for

repair, and CBP is known to be recruited to DSBs for histone acetylation [170]. There
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could possibly be crosstalk between CBP ubiquitination and its HAT function such that
autoubiquitination of CBP induces some sort of conformational change that promotes
CBP HAT activities. An earlier report showed that CBP autoacetylation was important in
positioning the CBP HAT and bromo domains for recognition by binding partners [117].
One question is whether CBP autoubiquitination in response to stress signals also
facilitates easy recognition by binding partners. Much evidence exists for the effect of
post-translational modifications such as acetylation, phosphorylation, methylation on
CBP transcriptional co-activator and HAT functions [108, 112, 115-117, 120, 122, 128].
Further investigation will be necessary to examine the non-proteolytic effects of CBP
autoubiquitination and to also determine whether CBP autoubiquitination has regulatory
roles on its co-activator and HAT activities.

We found that activation of ATR kinase activity was necessary for the DNA
damage-induced activation of nuclear CBP E3 ubiquitin ligase activity (Fig. 2.5, 2.6).
Activation of the apical kinases, ATM and ATR, in response to DNA damage, activate
checkpoint signaling through phosphorylation of substrate proteins. Indeed, our
observation that nuclear CBP is phosphorylated on S124 only in the nucleus in
response to DNA damage, indicates that CBP maybe a direct target of ATR kinase
activation (Table 2.1). This result is consistent with a prior study that identified several
novel proteins phosphorylated by ATM/ATR on SQ/TQ motifs in response to UV
radiation [162]. The study, using whole cell lysates, reported phosphorylation of CBP on
S124 in response to UV radiation at the SQ/TQ motif [162]. Phosphorylation is known to
regulate the co-activator role of CBP in the transcription of certain gene targets [112-

114]. Is nuclear CBP phosphorylation on S124 necessary for the DNA damage-induced
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nuclear CBP autoubiquitination or is it necessary for CBP acetyltransferase or co-
activator function post DNA damage? Recruitment of CBP to promoters of target genes
is transient and occurs in response to different cellular signals, implying tight regulation
of CBP mobility. Since CBP is subjected to diverse post-translational modifications, the
future direction for this part of the project would be to determine if there are cross talks
between all these DNA damage-induced CBP modifications and to fully understand how
this may contribute to CBP functions in response to DNA damage.

Under physiologic cell conditions, CBP has a diffuse nuclear staining pattern
when examined by immunofluorescence. We found that in response to genotoxic stress,
CBP localizes to discrete nuclear bodies, some of which localize with PML bodies (Fig.
2.7). It is known that CBP is recruited to PML bodies in response to RAS oncogenic
stress, where a trimeric p53-PML-CBP complex is formed, which facilitates p53
acetylation by CBP, thereby promoting p53 stability [158]. One vital question is whether
CBP autoubiquitination regulates CBP nuclear mobility and association with these
discrete nuclear bodies in response to stress.

DNA-damage induced CBP autoubiquitination could also possibly have role in
p53 regulation post DNA damage. We have previously established that under
physiologic conditions, CBP is a p53-directed E4 ubiquitin ligase and that the N-terminal
region of CBP required for its E3 autoubiquitination are also important for its E4 activity
[118]. In response to cellular stress, it is known that mechanisms such as ATM/ATR
phosphorylation of p53 on S15 and S20, ATM/ATR phosphorylation of Mdm2, and
sequestration of Mdm2 into the nucleolus by p14ARF, abrogate the p53-Mdm2

interaction, thereby stabilizing p53 to initiate DNA damage repair [155, 161, 165]. The
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same lysine residues on p53 that are ubiquitinated in the absence of stress are also
acetylated in response to stress. In response to DNA damage, p53 ubiquitination is
transiently suppressed and once repair is completed, p53 levels must return to
homoeostatic level, but exactly how this is accomplished is not completely understood.
Since CBP polyubiquitinates p53 in the absence of stress and also acetylates p53 in
response to stress, it is efficient for CBP to be involved in the mechanism that returns
p53 to homeostatic levels once repair is completed. We have shown in this work in
consistent with previous data, that p53 is ubiquitinated in the nucleus, in response to
doxorubicin (Fig. 2.9). DNA damage-induced CBP autoubiquitination could therefore
prime activation of CBP E4 activity towards p53, providing a mechanism by which p53 is
degraded after DNA damage repair. Mdm2-p53 interaction is disrupted in response to
DNA damage, and so some other p53 E3 ligases may function in conjunction with CBP
in regulating p53 degradation post DNA damage. On the other hand, since p53 and
Mdm2 form a negative feedback loop such that p53 transactivation leads to Mdm2
transcription, it is also possible that once repair is achieved, Mdm2 is available to co-
operate with CBP to destabilize p53. Further investigation is required to fully elucidate

this complicated mechanism in the p53 regulatory pathway.
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Implications From Chapter 3 and Future Perspectives: Novel Interaction Between
CBP and DBC1 and Regulation of CBP Ubiquitin Ligase Activities

In this chapter, the regulation of CBP ubiquitin ligase activities by binding
partners was investigated under unstressed cell conditions. CBP, as expected, has
many binding partners as a result of its transcriptional role and also because of its
involvement in many other cellular activities. Interestingly, and despite all previous
studies and available information on CBP-binding proteins, there was no report of CBP-
DBCL1 interaction. MudPIT studies revealed that DBC1stably interacts with CBP in the
nuclear and cytoplasmic compartments. DBC1 was first identified as being deleted in
certain breast cancers but there is evidence that it is also implicated in other cancer
types such as prostate cancer [171-173]. Its role in tumorigenesis is however, still
controversial, playing either a tumor suppressor or a tumor promoting role [172]. The
mechanism of DBCL1 function is therefore expected to be pleiotropic and may be
dependent on the cancer type and/or the cancer-inducing signals. We found that the N-
terminus of DBC1 interacts with both N- and C- termini of CBP (Fig. 3.13 and 3.14). The
N-terminus of DBC1 is known to interact with the deacetylases SIRT1 and HDACS3,
thereby inhibiting their functions [176, 177]. In addition, the N-terminal region of DBC1
binds to and regulates the epigenetic modifier SUV3H1 and certain nuclear receptors
[173-175, 178]. Both N- and C- terminal regions of CBP are functional. For example,
binding of N-terminus of p53 to the N-terminus of CBP promotes p53 degradation while
binding to the C-terminus of CBP is necessary for p53 stabilization [156, 157]. The fact

that the N-terminus of DBC1, which has been shown to possess inhibitory ability on the
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functioning of binding partners, binds both terminal regions of CBP, which are functional
in p53 regulation, suggests that DBC1 may play a role in the regulation of CBP activities
towards p53. In this study, depletion of DBC1 using siRNA robustly increased CBP E3
autoubiquitination activity in the nucleus and modestly in the cytoplasm (Fig. 3.15). It
was previously shown that the N-terminus of CBP is required for CBP E3
autoubiquitination and p53-directed E4 ubiquitin activities [118]. The simple explanation
for inhibition of CBP E3 ubiquitin ligase activity by DBC1 is most likely as a result of its
binding to the N-terminal region of CBP. At this point, we do not know the relevance of
DBC1 binding to the C-terminal region of CBP, and if there are any regulatory roles
involved. It will be interesting to determine the importance of DBC1 interaction with C-
terminal region of CBP.

We understand from previous studies that both Mdm2 and CBP cooperate to
maintain physiologic p53 levels under unstressed cell conditions [118, 152, 166, 167].
Evidence indicates that p53 is first monoubiquitinated in the nucleus by its E3 ubiquitin
ligase, Mdm2, signaling p53 export into the cytoplasm, where it becomes
polyubiquitinated by cytoplasmic CBP and degraded by the 26S proteasome [118, 121,
166, 167]. CBP loss has been shown to stabilize p53 [118]. In this present work, we
identified that DBCL1 loss led to a decrease in p53 half life in U20S cells and also
promoted p53 polyubiquitination [Fig. 3.16 and 3.17.). In addition, we found that re-
expression of DBC1 rescued the decrease in half life and the increase in p53
polyubiquitination observed in DBC1 depleted cells. These observations suggest that
DBCllikely promotes p53 stability by inhibiting CBP E4 polyubiquitin activity towards

p53. These findings may help provide an explanation for why monoubiquitinated
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species of p53 cannot be polyubiquitinated by nuclear CBP but instead, are exported
from the nucleus to the cytoplasm for polyubiquitination by cytoplasmic CBP, followed
by proteasomal dependent p53degradation. So, DBC1 binds tightly with CBP in the
nucleus and inhibits CBP E4 polyubiquitination ability. In the cytoplasm however, CBP
polyubiquitinates p53, mediating p53 degradation, despite the CBP-DBC1 interaction in
the cytoplasm. Even though DBC1 inhibits CBP ubiquitin ligase activities in the
cytoplasm and nucleus, the inhibition is more profound in the nucleus than in the
cytoplasm. This could be as a result of differential CBP and DBC1 PTMs in the nucleus
vs. cytoplasm, DBCL1 interacting proteins in the nucleus and cytoplasm, stoichiometry of
CBP and DBCL1 in the nucleus and cytoplasm, or as a result of other cytoplasmic
entities that promote CBP ubiquitin ligase activities. It will be therefore necessary to
determine if any of these stated factors contribute to DBC1 inhibitory function towards
CBP.

A recent work demonstrated the tumor suppression activity of DBC1 through the
regulation of p53 stability in mouse embryonic fibroblasts [180]. They showed that the
N-terminus of DBC1 interacts with the N-terminus of p53 but does not interact with
Mdm2. Their work also indicated that DBC1 stabilizes p53 through competition with
Mdm2 [180]. Since CBP, Mdm2 and DBC1 bind the N-terminus of p53, there is
therefore an intriguing possibility that these proteins could exist in some sort of complex
that co-operatively regulates p53 turn over and stability in cells.

In response to doxorubicin-induced DNA damage, endogenous DBCL1 protein
levels decreased in the nuclear compartment resulting in a dissociation of CBP-

DBClinteraction (Fig. 3.19). An early study showed caspase- dependent amino
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terminally truncated versions of DBC1 in response to tumor necrosis factor (TNF) - a-
mediated apoptosis, resulting in decreased level of endogenous nuclear DBC1 protein
[181]. Their data indicated that deletion of the amino -terminus of DBC1 led to
cytoplasmic localization. They also showed a decrease in DBC1 protein level in
response to staurosporine and the genotoxic agent, etoposide [181], to indicate that
apoptotic pathway inducers generate this amino terminally truncated DBC1. This finding
may therefore explain the reason for the dissociation of nuclear CBP-DBCL1 interaction
in response to DNA damage we observed (Fig. 3.19). We have shown in this work that
the N-terminus of DBC1 is required for interaction with CBP (Fig. 3.11). This simply
means that in response to DNA damage, the DBC1 N-terminus region is truncated and
so cannot effectively interact with CBP. Also, it is known that in response to DNA
damage, DBCL1 is phosphorylated by ATM/ATR, promoting its binding with the p53
deacetylase protein, SIRT1[179]. DBC1/SIRT1 interaction inhibits the deacetylase
function of SIRT1, promoting p53-dependent apoptosis [179].

The physiologic role of CBP and DBCL1 in the regulation of p53 biologic
responses after DNA damage is not completely understood. Individual losses of CBP
and DBC1 caused p21 and PUMA induction suggesting that individually, physiologic
levels of neither CBP nor DBC1 are required for the p53-dependent transactivation of
p21 and PUMA in response to doxorubicin in U20S cells. Also, p21 and PUMA
induction do not require acetylation of p53 on Lysine 382 as CBP deficient cells with
decreased p53 Lys 382 acetylation, and DBC1 depleted cells showing p53 acetylation
on Lysine 382, exhibited p21 and PUMA induction (Fig. 3.20). In addition, CBP and

DBC1 seem to regulate apoptotic response differently. While individual loss of CBP
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augmented cleaved caspase 3/PARP protein expression, DBC1 deficient cells only
showed a slight increase in cleaved caspase 3/PARP compared with CBP deficient
cells. Further work will be necessary to fully elucidate the role of DBC1 in p53-induced
apoptosis. DBC1 has been shown to be involved in TNF-a-mediated apoptosis [181]. In
response to TNF-a-mediated death signaling and etoposide induced apoptosis, DBC1 is
processed in a caspase dependent manner into carboxyl-terminally containing forms.
These proteolytically processed DBC1 forms were shown to be necessary for
sensitizing cells to TNF-a-mediated apoptosis [181]. CBP and DBC1 may therefore
engage in different pathways to regulate biologic responses to apoptosis.

Our data support the proposed tumor suppression function of DBC1, via
inhibition of CBP-dependent p53 polyubiquitination in the absence of cellular stress.
Frequently, p53 regulators that are altered in cancers are usually involved in the
maintenance of physiologic p53 levels. This could possibly be a factor in the loss of
DBCL1 in some human cancers. For instance, according to The Cancer Genome Atlas
(TCGA) database, a study carried out in 2015 on breast invasive carcinoma revealed
that 33% of patients with DBC1 homozygous deletion or mutations retained wild type
p53 (Table 4 and Fig 3.22) [182]. Also according to TCGA, a separate study carried out
in 2015 on prostate adenocarcinoma revealed that 96% of patients with DBC1
homozygous deletion or mutations had wild type p53 status. Other cancer types with
DBC1 alterations but retaining the wild-type p53 status were also reported in TCGA

database (Table 4 and Fig 3.22) [183].
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Final Thoughts

The work described within this dissertation, for the first time, reveals that DBC1
interacts with CBP, in the cytoplasm and nucleus. In the absence of DNA damage,
DBC1 negatively regulates CBP E3 autoubiquitination, and p53-directed, CBP E4
ubiquitin ligase activities in cells. Physiologic p53 levels are primarily maintained by
ubiquitination activities coordinated by Mdmz2, an E3 ubiquitin ligase, and CBP, an E4
ubiquitin ligase. CBP-DBC1 interaction, thus, participates in the complex pathway, that
regulates p53 turnover and stability in cells.

In response to DNA damage, the CBP-DBCL1 interaction is disrupted in the
nucleus, and nuclear CBP ubiquitin ligase activity is induced following ATR kinase
activation. CBP is modified, in response to DNA damage, and also recruited to PML
bodies, where it acetylates p53, contributing to p53 stability. Once DNA damage is
repaired, the active CBP ubiquitin ligase activity possibly participates in the reset of p53
levels to homeostatic levels. DBCL1 is also known to be modified, in response to DNA
damage, leading to its tight interaction with SIRT1, and subsequent inhibition of the
deacetylase function of SIRT1.

All'in all, this study provides insights into the mechanism of differential CBP
ubiquitin ligase activities, in the absence and presence of DNA damage, in the
cytoplasm versus nucleus. The significance of this thesis work is that it may open up
avenues for the development of novel cancer therapeutic strategies, that target the p53
degradation pathway, to cause p53 stabilization and activation in tumors that retain wild

type p53.
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Normal condition

27 CBP/DBC1 PTMs, binding partners,
stoichiometry, other cytoplasmic factors

No poly-ubiquitination

Figure 4.1 Graphic summary of CBP-DBC1 interaction and p53 degradation in the absence of
cellular stress. DBC1 interacts with CBP in cytoplasm and nucleus. Cytoplasmic CBP E4 polyubiquitin
activity towards p53 is active with or without interaction with DBC1. CBP-DBC1 interaction in nucleus

inhibits CBP E4 polyubiquitin activity towards p53.
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Appendix

CBP-Interacting Proteins in Response to Doxorubicin-Induced DNA Damage

CBP possesses cytoplasmic restricted E3 autoubiquitination and p53-directed E4
ubiquitin ligase activities in the absence of cellular stress. These CBP ubiquitin ligase
activities are dormant in the nucleus, in the absence of stress. The studies within
Chapter 2 of this dissertation examined the effect of DNA damage on CBP ubiquitin
ligase activities. We showed that DNA damage can induce the activation of the
otherwise dormant nuclear CBP E3 autoubiquitination while cytoplasmic CBP E3
autoubiquitination remained active. The next step was to identify CBP-interacting
proteins in the cytoplasm and nucleus, in response to DNA damage. CBP was
immunoprecipitated from cytoplasmic and nuclear fractions of U20S cells treated with
doxorubicin for 3 hrs, followed by MudPIT analysis. After subtracting non-specific
proteins that bound IgG controls for IPs, MudPIT data revealed 97 cytoplasmic CBP-
interacting proteins, and 38 nuclear CBP-interacting proteins (Table 5). We identified 11
overlapping CBP-interacting proteins between cytoplasm and nucleus, amongst which
was PML (Table 5). This is consistent with studies that showed that CBP interacts with
PML, and that CBP can be recruited to PML nuclear bodies, in response to DNA
damage (122, 158). Notably, PML was also identified by MudPIT analysis as
cytoplasmic CBP-interacting protein in the absence of DNA damage. PML protein is

crucial for the formation of PML nuclear bodies and there are 7 known PML isoforms
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designated PMLI to PMLVII. PML1-VI are mostly found in the nucleus while PML VIl is
cytoplasmic. We identified interaction between CBP and PML-II, in the absence of DNA
damage, in the cytoplasm, and also in response to DNA damage, in the cytoplasm and
nucleus. This observation is based on data obtained from one MudPIT analysis in
response to DNA damage. It will be therefore necessary to repeat the MudPIT analysis
in response to DNA damage, in order to confirm this observation. Also, it will be
interesting to examine the effect of PML-II and other candidate CBP-interacting

proteins, on CBP ubiquitin ligase activities, in response to DNA damage.
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